机械毕业设计1271三环减速器毕业设计.doc

机械毕业设计1271三环减速器毕业设计

收藏

压缩包内文档预览:(预览前20页/共38页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:536521    类型:共享资源    大小:449.35KB    格式:ZIP    上传时间:2015-11-28 上传人:QQ28****1120 IP属地:辽宁
6
积分
关 键 词:
机械毕业设计论文
资源描述:
机械毕业设计1271三环减速器毕业设计,机械毕业设计论文
内容简介:
1 中 文 摘 要 三环减速器是少齿差行星齿轮传动中的一种。本文介绍了三环减速器的概况,三环减速器的组成及工作原理, 三环减速器的传动比,并对其结构参数做了详细的设计等。 关键词 : 三环减速器;传动比;结构设计 第一章 绪 论 三环减速器是 少 齿差行星齿轮传动中的一种。它由一个外齿轮与一个内齿轮组成一对内啮合齿轮副,采用的是渐开线齿形,内外齿轮的齿数相差很小(通常为 1、2、 3 或 4),故简称为少齿差传动。三环减速器是由重庆钢铁设计院陈宗源高级工程师在 1985年申请的发明专利,它以其适用与一切功率、速度范围和一 切工作条件的优点而受到了广泛关注。 1.1 三环减速器的概况 齿轮减速器在各行各业中十分广泛地使用着,是一种不可缺少的机械传动装置。当前减速器普遍存在着体积大、重量大,或者传动比大而机械效率过低的问题。国外的减速器,以德国、丹麦和日本处于领先地位,特别在材料和制造工艺方面占据优势,减速器工作可靠性好,使用寿命长。但其传动形式仍以定轴齿轮传动为主,体积和重量问题,也未解决好。最近报导,日本住友重工研制的 FA型高精度减速器,美国 Alan-Newton公司研制的 X-Y式减速器,在传动原理和结构上与本项目类似或相近 ,都为目前先进的齿轮减速器。当今的减速器是向着大功率、大传动比、小体积、高机械效率以及使用寿命长的方向发展。因此,除了不断改进材料品质、提高工艺水平外,还在传动原理和传动结构上深入探讨和创新,平动齿轮传动原理的出现就是一例。减速器与电动机的连体结构,也是大力开拓的形式,并已生产多种结构形nts 2 式和多种功率型号的产品。目前,超小型的减速器的研究成果尚不明显。在医疗、生物工程、机器人等领域中,微型发动机已基本研制成功,美国和荷兰近期研制的分子发动机的尺寸在纳米级范围,如能辅以纳米级的减速器,则应用前景远大。 1.2 国内发展的状况 国内的减速器多以齿轮传动、蜗杆传动为主,但普遍存在着功率与重量比小,或者传动比大而机械效率过低的问题。另外,材料品质和工艺水平上还有许多弱点,特别是大型的减速器问题更突出,使用寿命不长。国内使用的大型减速器( 500kw以上),多从国外(如丹麦、德国等)进口,花去不少的外汇。 60年代开始生产的少齿差传动、摆线针轮传动、谐波传动等减速器具有传动比大,体积小、机械效率高等优点。但受其传动的理论的限制,不能传递过大的功率,功率一般都要小于 40kw。由于在传动的理论上、工艺水平和材料品质方面没有突破, 因此,没能从根本上解决传递功率大、传动比大、体积小、重量轻、机械效率高等这些基本要求。 90年代初期,国内出现的三环(齿轮)减速器,是一种外平动齿轮传动的减速器,它可实现较大的传动比,传递载荷的能力也大。它的体积和重量都比定轴齿轮减速器轻,结构简单,效率亦高。由于该减速器的三轴平行结构,故使功率 /体积(或重量)比值仍小。且其输入轴与输出轴不在同一轴线上,这在使用上有许多不便。北京理工大学研制成功的 “ 内平动齿轮减速器 ” 不仅具有三环减速器的优点外,还有着大的功率 /重量(或体积)比值,以及输入轴和输出轴在同一轴线上 的优点,处于国内领先地位。国内有少数高等学校和厂矿企业对平动齿轮传动中的某些原理做些研究工作,发表过一些研究论文,在利用摆线齿轮作平动减速器开展了一些工作。平动齿轮减速器工作原理简介 ,平动齿轮减速器是指一对齿轮传动中,一个齿轮在平动发生器的驱动下作平面平行运动,通过齿廓间的啮合,驱动另一个齿轮作定轴减速转动,nts 3 实现减速传动的作用。平动发生器可采用平行四边形机构,或正弦机构或十字滑块机构。本成果采用平行四边形机构作为平动发生器。平动发生器可以是虚拟的采用平行四边形机构,也可以是实体的采用平行四边形机构。有实用价 值的平动齿轮机构为内啮合齿轮机构,因此又可以分为内齿轮作平动运动和外齿轮作平动运动两种情况。外平动齿轮减速机构,其内齿轮作平动运动,驱动外齿轮并作减速转动输出。该机构亦称三环(齿轮)减速器。由于内齿轮作平动,两曲柄中心设置在内齿轮的齿圈外部,故其尺寸不紧凑,不能解决体积较大的问题。内平动齿轮减速,其外齿轮作平动运动,驱动内齿轮作减速转动输出。由于外齿轮作平动,两曲柄中心能设置在外齿轮的齿圈内部,大大减少了机构整体尺寸。由于内平动齿轮机构传动效率高、体积小、输入输出同轴线,故由广泛的应用前景 。 1.3 课题 研究意义 ( 1)减速比大,三环式单级减速比为 11到 99, 双级传动比达 9801。 普通外啮合齿轮减速器单级减速比最大为 10。 ( 2)体积小重量轻,外啮合齿轮只在一点捏合,接触应力是影响传动的瓶颈,三环式三点啮合,接触处两齿轮曲率半径在同侧,尺寸接近,接触面积大,接触应力小,设计是用不着核算接触应力,只要弯曲应力够就行了,由于三环式中间外齿轮齿数较多,其抗变曲性能也较,据有关资料介绍同扭矩的减速器,三环式重量只有普通减速器的 1/3,体积只有 1/4。这里无疑有巨大的经济效益。 ( 3)承载能力高,轴承寿命长。由于采用少齿差内啮合传动, 三环式除了三点啮合外,在过载时由于齿的弹性变形,会有很多齿同时工作, 所以齿轮的承载能力较高;另外 由于接触应力小,有利于润滑,三根轴上的载荷都呈 120度nts 4 角均匀分布, 转臂轴承位于内齿圈外,起布置空间大, 所以轴的弯曲应力小,主轴承载小,有利于承受过载载荷, 因而转臂轴承的寿命较高,可达到 2 万小时以上 。 ( 4)制造容易、成本低,由于对接触强度及弯曲强度都要求不高,轴的应力也较一般的低,所以对材质、热处理无特殊要求,调质就可以了,齿轮精度一般为 8级,能生产 原少齿差的制造厂都能生产。 对于采用 7 级精度齿轮的这种减速器,其传动误差可在 1左右。 ( 5) 精度高。由于三片内齿轮同时与外齿轮啮合,误差可以相互弥补,所以整机精度高。 ( 6)适应性广。根据不同的应用场合,可以制成卧式,立式,法兰联结式等各种结构形式。 ( 7)轴向尺寸小,径向尺寸大。有两根高速轴,可以单轴输入,也可以双轴输入。输入轴与输出轴平等,而且中心距与齿轮参数无关,根据需要设计。 ( 8)效率高。由于取消了输出机构,而且转臂轴承受力较小,其效率可达 92 到96%。 1.4 研究方向 本课题研究的方向是内齿 行星齿轮减速器。即利用内齿行星齿轮减速器的减速作用将高速运转的输出轴的转速降低以连接到输出设备,得到适合工作的转速。目前我国正处于社会主义发展和全面建设小康社会的关键时期,对工业的需求也是与日俱增。减速器则是工业中的一个重要装置。由于内齿行星齿轮减速器技术具有传动比大、精度高、承载能力高、轴承寿命长、适应性广、结构简单、制造维修方便、成本低等优点,因此,三环减速器以及内齿行星齿轮减速器广泛的应用与矿山、冶nts 5 金、飞机、轮船、汽车、机床、起重设备、电工机械、仪表、化工、轻工业、医药、农业等许多领域 。这类减速器有 着广泛的发展前景,是减速器行业更新换代的产品,应大力推广和宣传,让这一新技术产品为我国社会主义建设做出更大的贡献。 第二章 三环减速器的分析 三环减速器是一种利用三相并列双曲柄机构来克服死点的少齿差行星齿轮减速器, 具有传动比大、适用范围广、承载能力强、重量轻、传动效率高、轴承受力小、寿命长等许多独特的优点,在各行业得到了广泛的应用。但是由于 三环减速器 问世时间短,缺乏全面完整的理论分析和实验研究,在设计中只能以类比法或借助于简化模型进行计算,使得产品的性能不稳定,设计参数偏大,造成材料没有得到最充分的 利用,影响了这种传动形式的进一步发展。本文应用位移协调原理,从系统变形的角度,建立了三环减速器的动力分析精确模型,并对三环减速器进行求解,研究了各种因素对其动力特性的影响,为正确设计三环减速器提供了科学的理论依据。 2.1 三环减速器的组成及工作原理 三环减速器是由平行四边形机构和内啮合齿轮机构组成的复合传动机构。图 2-1和图 2-2是 偏置 式 三环减速器的结构和传动简图。两根互相平行且各具有三个偏心轴颈的高速轴 2和 3,动力通过其中任一或两轴同时输入,有动力输入的曲柄轴称为输入轴 2,无动力输入的曲柄轴称为支承轴 3。平行四边形机构的曲柄 6和 7一般制成偏心套的形式,其结构见图 2-3,平行四边形机构的连杆上带有内齿轮,称为内齿环板1,图 2-4是它的结构图。输出轴 4和外齿轮 5通常制造成为一体成为齿轮轴。 当输入轴 2旋转时,由偏心套曲柄 6和 7带动的行星轮内齿环板 1不是作摆线运动,而是通过nts 6 一双曲柄机构 (具有偏心轴颈的高速轴 )引导作圆周平动, 三片并列的连杆行星齿板(即内齿环板 1)通过轴承装在高速轴 2和 3上且与外齿轮 5相啮合输出动力,啮合的瞬间相位差为 120。 当平行四边形机构的连杆运动到与曲柄共线的两个位置 (0和 180) 时,机构的运动不确定,通常把这种运动不确定位置称为死点位置。为了克服机构在死点位置的运动不确定,最常用的方法是采用三相平行四边形机构并列布置,也就是用三块内齿环板并列且各相环板之间互成 120的相位角。当某一相平行四边形机构运动到死点位置时,由其它两相机构传递动力,从而克服死点。采用这种并列方式,不仅可以利用多相机构共同承担载荷,还可以使机构在运动平面内的摆动力相互平衡。 1.内齿环板 2.输入轴 3.支承轴 4.输出轴 5.输出轴外齿轮 6.输入轴偏心套 7.支承轴偏心套 图 2-1 偏置式三环减速器基本结构 图 2-2 偏置 式 三环减速器传动简图 图 2-3 偏心套 图 2-4 内齿环板 4 56 712 3576nts 7 1. 内齿环板 2. 输入轴 3. 支承轴 4. 输出轴 5. 输出轴外齿轮 6. 输入轴偏心套 7. 支承轴偏心套 图 2-5 对称式三环减速器基本结构 图 2-6 对称 式 三环减速器传动简图 根据两根高速轴(输入轴 2和支承轴 3)和输出轴 4之间不同的位置关系,三环减速器有两种基本的形式:偏置 式 和对称 式 。当输入轴和支承轴位于输出轴的同一侧时,称为偏置 式 三环减速器(见图 2-1和图 2-2)。当两根高速轴(输入轴和支承轴)相对于输出轴两侧对称布置时,称为对称 式 三环减速器,如图 2-5和 2-6所示。 2.2 三环减速器的传动比 图 2-7 三环减速器的 传动比计算 当输入轴旋转时,内齿环板作圆周平动。不计运动副间的摩擦,无论 曲柄 O1A和O2B转动到任何角度, Oo和 O 的连线总是与曲柄同 相位 ,OoO=O2B=O1A =e。内齿圈与外齿轮的啮合点 C总在 OOo的 延长线上。 AV BV/ABO1O 0O 2OCCV2 3416 751234 57 6nts 8 设内齿圈的齿数为 z2,外齿轮的齿数为 z1,则内齿圈的分度圆半径22 21 mzR ,外 齿 轮 的 分 度 圆 半 径11 21 mzR (m 为 模 数 ) , 曲 柄 长 度)(21 12121 zzmRReOOAO o 。设曲柄 O1A的转动角速度为 , 则 VA= VB= e,因为内齿环板为平动构件,在同一瞬时,平动构件上各点运动的轨迹形状和各点的速度均相同,故内齿圈和外齿轮的啮合点 C的速度矢 VC=VB,即 )(21 12 zzmV C 设外齿轮的角速度 (即输出轴的角速度 )为 ,则 )(2121 1211 zzmmzRV C 112 z zz 由传动比的普遍公式: i得到三环减速器传动比的计算公式如下 : 12 1 zzzi (2-1) 式中 i 传动比 z1 外齿轮的齿数 z2 内齿轮的齿数 负号表示输入轴与输出轴的转动方向相反。当内、外齿轮的齿数相差很小(通常为 1、2、 3或 4)时,三环 减速器的传动比大,具有结构紧凑的优点。 nts 9 第三章 三环减速器的结构设计 本章将在理论分析的基础上 对三环减速器进行结构设计。由于三环减速器的内齿圈和外齿轮相啮合时的齿数相差比较小,一般为 14。为了避免内、外齿轮之间的齿廓重迭干涉、保证足够的重合度,需要采用 变位齿轮传动,所以三环减速器的内、外齿轮变位系数的确定,是设计的重要内容之一。本章将主要确定齿轮副的啮合参数,进行变位系数计算,以及对主要零部件的结构进行设计和强度校核计算。 3.1 三环减速器的设计计算步骤 由于没有专门的三环减速器方面的设计资料,在三环减速器的结构设计时,通常参考少齿差行星齿轮减速器的结构设计步骤进行。本课题的已知条件为:传动比i=30,输出的负载扭矩为 Tmax =1000Nm,转速: 1500r/min。 三环减速器结构设计的计算步骤: ( 1) 三环减速器的总体结构设计; ( 2) 配齿计算 ; ( 3) 初步计算齿轮的主要参数; ( 4) 齿轮副啮合参数的计算; ( 5) 三环减速器的结构设计; ( 6) 三环减速器行星齿轮传动的强度验算。 3.2 配齿计算 根据( 3-1)式 121 zz zi ( 3-1) nts 10 已知 30i 即 30121 zz zi313021 zz选 93,90 21 zz 3.3 初步计算齿轮的主要参数 3.3.1 齿轮材料的选择、类型、精度等级、及齿数 齿轮材料及热处理是影响齿轮承载能力和使用寿命的关键因素,也是影响齿轮生产质量和加工成本的主要因素。齿轮材料的选择应综合地考虑到齿轮传动的工作情况、加工工艺和材料来源及经济性等条件。 ( 1)按本课题的传动方案,选用直齿圆柱齿轮传动; ( 2)本设计的内齿环板、外齿轮的材料皆采用 45号钢调质处理 55。外齿板的加工精度 6级,内齿圈的加工精度 7级; ( 3)外齿轮齿数 z1=90,内齿轮齿 数 z2=93。 齿数差为 zp=93-90=3。 3.3.2 齿轮传动主要参数的计算 三环减速器强度计算时最常用的办法是按照齿面接触强度初算小齿轮的分度圆直径 d1或按照齿根弯曲强度初算齿轮模数 m。 根据给出的已知条件,本设计按照齿根弯曲强度初算齿轮的模数: 3lim2111FdFaFPFAmzKKKKTKm(3-2) 式中 : Km 算式系数,对于直齿轮传动: Km=12.19 KF 综合系数, 1.62.2,取 KF =2.0 nts 11 KA 使用系数, KA=1.5 KFP 计算弯曲强度的行星轮间载荷分布不均匀系数, KHP=1.210,由公式KFP=1+1.5( KHP-1) =1+1.5( 1.2-1) =1.3; YFa1 小齿轮齿形系数, YFa1=2.67; z1 齿轮副中小齿轮的齿数,即输出轴外齿轮的齿数 z1=60; Flim 试验齿轮弯曲疲劳极限; d 小齿轮齿宽系数, d=0.6 ; T1 啮合齿轮副中小齿轮的名义转矩, Nm; mmz KKKKTKmFdFaFPFAm 7.1220906.067.23.10.25.1310001.12 3 23l i m2111 取齿轮模数为: m=2mm。 3.4 三环减速器齿轮副啮合参数的计算 三环减速器齿轮副的啮合参数包括齿轮副啮合的变位系数和啮合角。要想设计出既经济又合理的三环减速器,必须选择恰当的变位系数和啮合角。 由于三环减速器采用的是少齿差内啮合传动,容易产生各种干涉,因此在设计时要注意一些限制条件。 3.4.1 三环减速器内啮合齿轮副的干涉 三环减速器在设计时避免产生干涉应该注意的一些限制条件: ( 1)不发生过渡曲线干涉; ( 2)不发生渐开线干涉; ( 3)保证足够的顶隙; nts 12 ( 4)不发生节点对面的齿顶干涉; ( 5)必须保证不产生齿顶干涉和齿廓重 迭 干涉,应满足 Gs0; ( 6)避免内、外齿轮沿径向移动发生的径向干涉等; ( 7)保证重合度大于 1; ( 8)为了保证渐开线齿廓,内齿轮的齿顶圆必须大于基圆; ( 9)为了避免轮齿的磨损,内、外齿轮的齿顶不得变尖,并且要有足够的厚度,齿顶厚度必须大于 (0.25-0.4)m。 3.4.2 变位系数选择时应该满足的主要限制条件: 在选择三环减速器的变位系数时,首先应该满足内啮合的啮合方程式: ta n)(21212 zz xxin vin v (3-3) 虽然设计三环减速器的限制条件很多,但是在设计和实际使用中通常只需满足以下两个主要限制条件 11: ( 1)按啮合中心距 a装配时,保证齿轮副不产生齿廓重叠干涉:即应满足齿廓重叠干涉系数 GS 0 。即: 0)()()( 12222111 in vzzin vzin vzG aaS 44a r c c o s1221221 ad addaaa 44a r c c o s2221222 ad addaaa )*(2 111 xhmdd aa )*(2 222 xhmdd aa ( 2)保证不发生齿顶干涉,必须满足内啮合齿轮副的重合度 1 nts 13 1)t a n( t a n)t a n( t a n2 1 2211 aa zz 以上公式中各符号的含义: da1 外齿轮齿顶圆直径; da2 内齿轮齿顶圆直径; a1 外齿轮齿顶圆压力角; a2 内齿轮齿顶圆压力角; a 齿轮副实际啮合中心距; 压力角 =20; z1 外齿轮齿数 z1=90; z2 内齿环板上的内齿轮齿数 z2=93; x1 外齿轮变位系数; x2 内齿轮变位系数; Gs 齿廓重迭干涉系数; 内啮合齿轮副的重合度; ha* 齿顶高系数; d1 外齿轮的分度圆直径; d2 内齿轮的分度圆直径。 由公式( 3-2)可知:在 z1、 z2和 一定时,变位系数 x1和 x2的变化直接影响到啮合角的大小。啮合角 是变位系数的函数 , 变位系数 x1、 x2的选择问题 , 实质上是决定三环减速器 能否消除干涉现象的问题。对于一对啮合齿轮 , 可把变位系数 x1、 x2视为自变量 , 而把自己确定的参数作为常量 , 即限制条件是变位系数的函数。因此 , 满nts 14 足两个主要限制条件的问题便可归结为求合适的变位系数的问题。 3.4.3 三环减速器变位系数的确定 把变位系数 x1、 x2取为独立变量,把啮合角 取为中间变量,求解方程组就可以得出变位系数 x1、 x2的值。由于限制条件中有许多超越方程,直接求解变位系数是非常困难或是不能求解的。因此,下面用逐步逼近的迭代方法来求得同时满足两个限制条件的变位系数。计算步骤 如下: ( 1)要求达到 = =1.0500, Gs =Gs=0.05。 和 Gs分别为设计要求达到的三环减速器内啮合的重合度和齿廓重叠干涉系数。 ( 2)确定 、 x1及 x2 初选 =28.5、 ha*=0.6、 =20。少齿差所选择的齿顶高系数 ha*没有统一的规定,可在 0.50.8 的范围内由设计者选定 55。但是应该考虑到采用短齿和变位相结合的方式才是避免干涉出现的最好办法。研究表明 54,齿顶高系数选择合适,啮合角就随着降低,对提高啮合效率和行星轮轴承寿命有利。 取 x1的初始值 1)0(1 x ,计算几何尺寸及参数。模数为 mmm 2 。 mmzmd 18090211 mmzmd 18693222 mmdd b 14.16920c o s180c o s11 mmdd b 78.17420c o s186c o s22 mmxhzmd aa 4.186)126.0290(2)22( )0(1*11 )0(112)0(2 t a n2/)()( xin vin vzzx mmin vin v 126.11)20t a n2/()205.28)(9093( mmxhzmd aa 104.188)126.126.0293(2)22( )0(2*22 85.24)4.186 14.169a r c c o s ()c o s (c111 aba ddarnts 15 69.21)104.188 78.174a r c c o s ()c o s (c222 aba ddarmmzzma 32/)9093(22/)( 12 mmaa 208.35.28c o s 20c o s3c o sc o s t a nt a nt a nt a n2 1 2211 aa zz (3-4) 0 0 0 0 3.15.28t a n69.21t a n935.28t a n85.24t a n902 1 r a dar arraaa 318.15.75208.32.932 208.32.93054.94a r c c o s2a r c c o s 2221221221 (3-5) r a dararrraaa 285.16.73208.3504.942 208.32.93054.94a r c c o s2c o sca 222222 1222 (3-6) 1295.0)285.169.21(935.28)9093()318.185.24(90)()()( 22212111 in vin vin vin vzin vzzin vzG aas (3-7) 计算四个偏导数: 297.05.28s in20t a n85.24s in20c o s1s int a ns inc o s12211 ax(3-8) 408.05.28s in20t a n69.21s in20c o s1s int a ns inc o s12222 ax(3-9) nts 16 43.320t a n25.75c o s5.75s i n2.93936.73c o s6.73s i n052.94905.28s i n6.73s i n5.75s i n05.942.93208.320s i n25.75s i n052.9493)6.735.75c o s (6.73s i n052.94903.7s i n5.75s i n05.942.93208.3220c o s85.24s i n2t a n2c o ss i nc o ss i ns i ns i ns i ns i ns i n)c o s (s i ns i ns i nc o ss i n22222112122222121211212212221212111aaaaaaaaaSrzrzrramrzrzrramxG(3-10) 401.220t a n25.75c o s5.75s i n2.93936.73c o s6.73s i n052.94905.28s i n6.73s i n5.75s i n2.93052.94208.320s i n26.73s i n052.9490)6.735.75c o s (5.75s i n2.93936.73s i n5.75s i n2.9305.94208.3220c o s69.21s i n2t a n2c o ss i nc o ss i ns i ns i ns i ns i ns i n)c o s (s i ns i ns i nc o ss i n22222112122222121212221211212212122aaaaaaaaaSrzrzrramrzrzrramxG(3-11) nts 17 计算 )1(2)1(1 ,xx 及相应的 212121,),(xGxGxxxxJSS (3-12) 221121211,),(,),(),(xGGxxGxxxxxSSS (3-13) ),(,),(,),(211211212SS GxxGxxxxxx(3-14) ),(),()(2)(1)(2)(11)(1)1(1nnnnnnxxJxxxx (3-15) ),(),()(2)(1)(2)(12)(2)1(2nnnnnnxxJxxxx ( 3-16) 带入 )t a n2(1212 zz xxin va rc in v 将 x1(1) 、 x2(1) 和 代入重合度 ( 3-4)和 Gs齿廓重叠干涉系数 (3-7)中得到 : 998.0281.28t a n69.21t a n93281.28t a n85.24t a n9021t a nt a nt a nt a n212211 aa zz(3-17) 1266.0)285.169.21(93281.28)9093()318.185.24(90)()()( 22212111in vin vin vin vzin vzzin vzG aas (3-18) 显然需要根据得出的数值按上述步骤重新进行设计计算,每一次迭代都能得出相应的结果,经四次迭代可以满足要求, 最后得到的计算结果如下所示: x1=0.79 ; x2=1.18; =28.1 ; =1.05 ; GS=0.05 nts 18 表 3-1 齿轮啮合参数表 序 号 名 称 符 号 外 齿 轮 内 齿 轮 1 模数 m 2 2 原始齿形角 20 3 齿顶高系数 ha* 0.6 4 啮合角 28.1 5 齿轮的齿数 z 90 93 6 变位系数 x 0.79 1.18 7 实际啮合中心距 a 3.208 8 分度圆直径 d 180 186 3.5 三环减速器的结构设计 3.5.1 输出轴的结构设计及校核 进行轴的强度设计及校核时,应根据轴的具体受载及应力情况,采用相应的计算方法,并恰当地选取其许用应力。 (1) 初步确定输出轴的最小直径 初步确定 轴的最小直径可按照公式 18 3 5Td (3-19) 或 3 nPAd (3-20) 来确定。 式中: T 轴传递的扭矩 (Nmm);nPT 9550000nts 19 d 计算剖面处轴的直径( mm) P 轴传递的功率( kW) n 轴的转速( r/min) 轴的许用扭转应力( MPa) A0 按照 定的系数 根据本设计给出的已知条件带入公式 ( 3-19) 计算比较合适,得到轴的最小直径: mmnPAd 20.541500 95500001500101000115 3330m i n 考虑到轴上有一个键槽,直径可加大 47,考虑到安全性,取 dmin=60mm 。 (2) 输出轴的结构布置方案 输出轴采用实心轴的形式,因为轴的直径不大,通常采用齿轮轴的结构,按照上式初步确定所计算截面处轴的直径,同时进行轴的其他部分的结构设计。为了便于轴上零件的装拆,将齿轮轴制成阶梯轴,三块内齿板与输出轴外齿轮啮合处选择同样的直径,便于加工制造。 为使内、外齿轮的啮合正常这行,外齿轮的宽度应该大于两端最外侧内齿环板 310mm。轴上定位采用轴肩和定距环相结合的方式。轴的两端采用滚动轴承固定于减速器箱体。动力输出端设计一个键槽通过键与工作机相连接 具体结构及尺寸见零件图。 图 3-1是输出轴的三维实体造型图。 nts 20 图 3-1 输出轴的三维实体造型图 (3) 输出轴的强度校核 根据齿轮模数和齿数,分度圆直径为 240mm,输出轴的受力分析如图 2-11所示,得: TRPi cos(3-21) Pi 每个啮合齿轮所受的啮合力, Pi也就是输出轴上的外齿轮所受环板作用力的总和( N)。 根据啮合力的变化规律,在 275 工况角时,每块内齿环板所受的啮合力最大,也就是啮合齿轮所受的啮合力最大,为最危险工况,所以选择 275 进行轴的强度校核。 kNP 3.6 将轴上的力先平移到输出轴的轴线上,后沿水平和竖直两个方向分解得: )90s in (),90c o s (11PPPPyx (3-22) 另外一块环板施加的力与第一块环板施加的力相差 180 ,则对应的有: 。)18090s in (),18090c o s (22PPPPyx (3-23) 由于三块内齿环板的受力情况相同,因此只拿其中一块环板校核即可。 当 275 时,作用在与第一、二内齿环板相啮合的外齿轮上的啮合力分别为: kNPPkNPPyx47.2)1.2827590s in (3.6)90s in (79.5)1.2827590c o s (3.6)90c o s (11nts 21 kNPPPPyx47.2)1801.2827590s in (3.6)18090s in (kN79.5)1801.2827590c o s (3.6)12090c o s (22上式中正(负)号表示该力与坐标轴正向相同(相反)。 根据上述数值画出输出轴在竖直平面内的受力图如图 3-2所示。 竖直平面的约束反力: 图 3-2 输出轴在竖直平面内的受力图 由平面力系的平衡方程: 00AyMF )4665()46466565()466565(214621 21112yByyyyyByAyPRPPPPRR 得到轴承处的约束反力为 kNRkNRByAy00 ByRAyRyP2yP121 yP1211 2 3nts 22 A BP 2YP 1Y /2P 1Y /2123图 3-3 输出轴在竖直平面的弯矩图 图 3-3是输出轴在竖直平面内的弯矩图。竖直平面内拐点的弯矩值: k Nm mPMk Nm mPMyyyy81.564647.221462181.564647.22146211311 k N m mPRMyAyy 275.806547.221)6546(0652146 12 图 3-4是输出轴在水平平面内的受力图 R Ax R BxP 2xP 1x /2 P 1x /21 2 3图 3-4是输出轴在水平平面内的受力图 由平面力系的平衡方程: 00AyMF nts 23 )4665()46466565()466565(214621 21112xBxxxyyByAyPRPPPPRR 得到轴承处的约束反力为 kNRkNRBxAx 00 R AX RBXP 2XP 1X /2P 1X /21 2 3图 3-5 输出轴在水平平面内的弯矩图 图 3-5 是输出轴在水平平面内的弯矩图。水平面内的拐点的弯矩值为: k N mmPMk N mmPMxxxx17.1334679.521462117.1334679.52146211311k N mmPRM xAxx175.1886579.521)6546(065214612由弯矩图得 1、 2、 3 截面的合成弯矩为: mNMMM yx 78.144)17.133()81.56( 2221211 mNMMM yx 78.144)17.133()81.56( 2223233 nts 24 mNMMM yx 58.204)175.188()275.80( 2222222 经比较得知,输出轴上的最大弯矩 : mNMM 58.2042m a x 扭矩最大值为 T=1000Nm。由此可知,最危险截面在 2 或 3 处,其轴的强度校核应采用 )(101322 dTM ; (3-24) 或 3122)(10 TMd (3-25) 公式进行验算。 式中: 轴计算截面上的工作应力( MPa); d 轴的直径( mm),输出轴采用实心轴的形式; M 轴计算截面上的合成弯矩( N mm); T 轴计算截面上的扭矩( N mm); 根据扭转应力变化性质而定的校正系数: =0.65 -1 许用疲劳应力( MPa), 45钢调质 -1=180207 MPa 因此根据输出轴的受力状态,由最大弯矩 Mmax及该截面上的扭矩,带入公式 (3-25)可得出输出轴在 2截面处的最小轴径为: mmd 83.28200)10003265.0()58.204(101032232 输出轴在 3截面处的最小轴径为: mmd 9.31200 )100065.0()78.144(10103 2233 输出轴零件图上所取的输出轴的所有轴径都大于这两个数值,输出轴的轴径满足强nts 25 度要求。 3.5.2 输入轴的结构设计及校核 (1) 初步确定输入轴的最小直径 选取轴材料为 45 钢, A0=115,根据公式 mmnPAd 79.174 5 0 0 0 09 5 5 0 0 0 04 5 0 0 0 056.35115 330m i n 因为轴上有三个键槽,适当加大最小轴径 1015%。可以取 20mm以上即可。 (2) 输入轴的结构布置方案 考虑到输入轴是动力输入端,有一个与联轴器相连接的键槽 ,另外与三片内齿环板相连接的地方有三个沿着圆周方向分别间隔 180分布的键槽,因此,取输入轴最小直径为 45mm。为了便于轴上零件的装拆,将齿轮轴制成阶梯轴,轴上定位采用轴肩和定距环相结合的方式。轴的两端采用滚动轴承固定于减速器箱体。 (3) 输入轴的强度校核 输入轴的受力图如图 2-9 所示。在危险工况下行星轴承作用于输入轴上的力分别为: kNFFP rx 8646.1s inc o s )1(3)1(31 kNFFP ry 2632.19c oss in )1(3)1(31 kNFFP rx 3565.21s inc o s )2(3)2(32 kNFFP ry 4865.9c o ss in )2(3)2(32 正负号表示受力的正负向。 1 输入轴的约束反力求解及各个关键截面的弯矩值 根据上述数值将输入轴在竖直平面的受力情况画出,如图 3-6 所示,由平面力系平nts 26 衡方程得: R ByP 2yP1y /2AyRP 1y /2图 3-6 输入轴在竖直平面内的受力图 R AyP 1y /22yPByRP 1y /2图 3-7 输入轴在竖直平面内的受力图和弯矩图 )4665()4665()4665( 1212ByyyyyByAyRPPPPRR 解得其约束反力: kNRkNRByAy37.1437.14 图 3-7是输入轴在竖直平面的弯矩图,竖直平面内拐点的弯矩值: mNRM Ayy 02.6614637.14461 mNRM Byy 02.6614637.14463 mNPRM yAyy02.1152462632.1921)6546(37.144621)4665( 12nts 27 输入轴在水平平面的受力如图 3-8所示 R BxP 2xP 1x /2AxRP 1x /2 图 3-8 输出轴在水平平面内的受力分析 R Ax2xPP 1x /2BxR水平平面内:P 1x /2图 3-9 输出轴在水平平面的弯矩图 由平面力系平衡方程得 : )6546()466565(21)46656546(4621 21112xxBxxxxBxAxPPRPPPRR 解得其约束反力: kNR Ax 75.9 , kNRBx 75.9 图 3-9是输入轴在水平平面内的弯矩图,水平平面内拐点的弯矩值: mNRM Axx 5.4484675.9461 nts 28 mNPRM xAxx 985.551)6546(2146 12 mNRM Bxx 5.4484675.9463 2 确定危险截面的位置 由弯矩图计算 1、 2、 3截面处的合成弯矩为: mNMMM yx 8.79802.6615.448 2221211 mNMMM yx 87.147102.1152985.551 2222222 mNMMM yx 8.79802.6615.448 2223233 经比较得知,内齿环板上的最大弯矩为: mNMM 87.1 4 7 11max 根据输入轴的受力状态,从电动机进入输入轴开始的第一、二、三块内齿环板我们将其命名为 1、 2、 3 号内齿环板,对应截面处的扭矩分别为 T、 2T/3、 T/3, 可见第一块内齿环板截面处的弯矩和扭矩同时达到了最大值,而输入轴上与三块内齿环板相接触处的截面形状和尺寸都完全相同,所以输入轴与第 1 块环板处的截面为最危险截面 。 3 输入轴的强度校核 根据公式( 3-25)校核输入轴危险截面处的最小轴径: 在内齿环板 1截面处的最小轴径为 mmd 5.19200 )56.3565.0()87.1471(10103 2231 零件图上输入轴的最小直径大于上面得到的这个数值,说明所取的输入轴的轴径满足强度要求。 nts 29 3.5.3 支承轴的结构设计及校核 支承轴的材料为 45钢,采用调质的热处理方式。 支承轴的结构设计和布置方式与输入轴相同。具体结构及尺寸见零件工作图。由于支承轴受载荷的情况与输入轴相同,而支承轴的行星轴承总载荷却比输入轴行星轴承总载 荷小,因此,支撑轴的强度校核可省略。 3.5.4 偏心套的结构设计及校核 (1) 偏心套的材料及热处理方式 偏心套是平行双曲柄机构的曲柄,它是实现平行双曲柄机构的关键,依靠偏心套的内孔中心与外圆中心偏心实现三块内齿环板 180的相位差,其偏心距就是双曲柄机构的半径。工作时,偏心套外圆中心以内孔中心为圆心,以偏心距为半径做圆周运动。 偏心套的材料选用 40Cr调质处理 30, 229-269HBs。 (2) 偏心套的偏心距计算 偏心套的偏心距采用下式计算 : mmzzme 196.31.28c o s 20c o s2 )9093(2c o sc o s2 )( 12 (3-26) (3) 偏心套的结构布置方式 在三环传动中,每一块内齿环板的高速轴孔上要安装两个尺寸型号完全相同的行星轴承,轴承的外径可比普通的少齿差传动的轴承外径小。同时,三环减速器的曲柄轴的直径与普通的少
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:机械毕业设计1271三环减速器毕业设计
链接地址:https://www.renrendoc.com/p-536521.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!