.doc_第1页](http://file1.renrendoc.com/fileroot_temp2/2020-3/4/f31680de-2c80-4e87-bb43-ea0b89c42121/f31680de-2c80-4e87-bb43-ea0b89c421211.gif)
.doc_第2页](http://file1.renrendoc.com/fileroot_temp2/2020-3/4/f31680de-2c80-4e87-bb43-ea0b89c42121/f31680de-2c80-4e87-bb43-ea0b89c421212.gif)
.doc_第3页](http://file1.renrendoc.com/fileroot_temp2/2020-3/4/f31680de-2c80-4e87-bb43-ea0b89c42121/f31680de-2c80-4e87-bb43-ea0b89c421213.gif)
.doc_第4页](http://file1.renrendoc.com/fileroot_temp2/2020-3/4/f31680de-2c80-4e87-bb43-ea0b89c42121/f31680de-2c80-4e87-bb43-ea0b89c421214.gif)
.doc_第5页](http://file1.renrendoc.com/fileroot_temp2/2020-3/4/f31680de-2c80-4e87-bb43-ea0b89c42121/f31680de-2c80-4e87-bb43-ea0b89c421215.gif)
已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
此文档收集于网络,仅供学习与交流,如有侵权请联系网站删除1. (福建卷)已知等差数列中,的值是( )A15B30C31D642. (湖南卷)已知数列满足,则=( )A0BCD3. (江苏卷)在各项都为正数的等比数列an中,首项a1=3 ,前三项和为21,则a3+ a4+ a5=( ) ( A ) 33 ( B ) 72 ( C ) 84 ( D )1894. (全国卷II) 如果数列是等差数列,则( )(A)(B) (C) (D) 5. (全国卷II) 11如果为各项都大于零的等差数列,公差,则( )(A)(B) (C) (D) 6. (山东卷)是首项=1,公差为=3的等差数列,如果=2005,则序号等于( )(A)667 (B)668 (C)669 (D)6707. (重庆卷) 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点。已知最底层正方体的棱长为2,且改塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是( ) (A) 4; (B) 5; (C) 6; (D) 7。8. (湖北卷)设等比数列的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q的值为 .9. (全国卷II) 在和之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为_10. (上海)12、用个不同的实数可得到个不同的排列,每个排列为一行写成一个行的数阵。对第行,记,。例如:用1,2,3可得数阵如图,由于此数阵中每一列各数之和都是12,所以,那么,在用1,2,3,4,5形成的数阵中,=_。11. (天津卷)在数列an中, a1=1, a2=2,且,则= _.12.(北京卷)设数列an的首项a1=a,且, 记,nl,2,3,(I)求a2,a3;(II)判断数列bn是否为等比数列,并证明你的结论;(III)求13.(北京卷)数列an的前n项和为Sn,且a1=1,n=1,2,3,求(I)a2,a3,a4的值及数列an的通项公式;(II)的值.14(福建卷)已知是公比为q的等比数列,且成等差数列.()求q的值;()设是以2为首项,q为公差的等差数列,其前n项和为Sn,当n2时,比较Sn与bn的大小,并说明理由.15. (福建卷)已知数列an满足a1=a, an+1=1+我们知道当a取不同的值时,得到不同的数列,如当a=1时,得到无穷数列:()求当a为何值时a4=0;()设数列bn满足b1=1, bn+1=,求证a取数列bn中的任一个数,都可以得到一个有穷数列an;()若,求a的取值范围.16. (湖北卷)设数列的前n项和为Sn=2n2,为等比数列,且()求数列和的通项公式;()设,求数列的前n项和Tn.17. (湖南卷)已知数列为等差数列,且()求数列的通项公式;()证明18. (江苏卷)设数列an的前项和为,已知a1=1, a2=6, a3=11,且, 其中A,B为常数.()求A与B的值;()证明数列an为等差数列;()证明不等式.19. (全国卷) 设正项等比数列的首项,前n项和为,且。()求的通项;()求的前n项和。20. (全国卷) 设等比数列的公比为,前n项和。()求的取值范围;()设,记的前n项和为,试比较与的大小。21. (全国卷II) 已知是各项为不同的正数的等差数列,、成等差数列又,() 证明为等比数列;() 如果数列前3项的和等于,求数列的首项和公差数列(高考题)答案1-7 A B C B B C C8. (湖北卷)-2 9. (全国卷II) 21610. (上海)-1080 11. (天津卷)260012.(北京卷)解:(I)a2a1+=a+,a3=a2=a+;(II) a4=a3+=a+, 所以a5=a4=a+,所以b1=a1=a, b2=a3=(a), b3=a5=(a),猜想:bn是公比为的等比数列 证明如下: 因为bn+1a2n+1=a2n=(a2n1)=bn, (nN*)所以bn是首项为a, 公比为的等比数列(III).13.(北京卷)解:(I)由a1=1,n=1,2,3,得,由(n2),得(n2),又a2=,所以an=(n2), 数列an的通项公式为;(II)由(I)可知是首项为,公比为项数为n的等比数列, =14(福建卷)解:()由题设 ()若当 故若当故对于15. (福建卷)(I)解法一: 故a取数列bn中的任一个数,都可以得到一个有穷数列an16. (湖北卷)解:(1):当故an的通项公式为的等差数列.设bn的通项公式为故(II)两式相减得17. (湖南卷)(I)解:设等差数列的公差为d. 由即d=1.所以即(II)证明因为,所以 18. (江苏卷)解:()由,得,把分别代入,得解得,()由()知,即,又-得,即又-得,又,因此,数列是首项为1,公差为5的等差数列()由()知,考虑即,因此,19. (全国卷) 解:()由 得 即可得因为,所以 解得,因而 ()因为是首项、公比的等比数列,故则数列的前n项和 前两式相减,得 即 20. (全国卷) 解:()因为是等比数列,当上式等价于不等式组: 或 解式得q1;解,由于n可为奇数、可为偶数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东女子职业技术学院《微生物学(含实验)》2023-2024学年第二学期期末试卷
- 山西电力职业技术学院《汉俄翻译》2023-2024学年第二学期期末试卷
- 北海康养职业学院《财务管理案例分析》2023-2024学年第二学期期末试卷
- 云南水利水电职业学院《数据挖掘基础》2023-2024学年第二学期期末试卷
- 山东财经大学燕山学院《播音主持作品赏析与研究》2023-2024学年第二学期期末试卷
- 杭州电子科技大学信息工程学院《运动疗法技术学》2023-2024学年第二学期期末试卷
- 钟山职业技术学院《Java程序设计基础》2023-2024学年第二学期期末试卷
- 贵州护理职业技术学院《粉末冶金材料原理》2023-2024学年第二学期期末试卷
- 动物世界美术课件
- 2024年工业缝制机械项目投资申请报告代可行性研究报告
- 高血压科普基础知识培训-2025世界高血压日
- 宪法卫士2023第八届全国学生学宪法讲宪法知识竞赛题库附答案(300题)
- 静脉输液不良反应及处理 课件
- 河南省开封市等2地2025届高三第三次质量检测英语+答案
- 北师大版2025三年级语文下学期期中课堂知识检测考试
- 2024年甘肃兰州事业单位招聘考试真题答案解析
- 宁波浙大宁波理工学院招聘13名事业编制工作人员笔试历年参考题库附带答案详解
- 延安精神知识讲座课件
- 企业宣传岗试题及答案
- 电力调度自动化系统预案
- 搜索三力测试题及答案
评论
0/150
提交评论