




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教学资料范本2020新课标高考艺术生数学复习:随机抽样含解析编 辑:_时 间:_ 第1节随机抽样最新考纲核心素养考情聚焦1.理解随机抽样的必要性和重要性2.会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法会用随机抽样的基本方法解决一些简单的实际问题简单随机抽样、系统抽样与分层抽样的运用、增强数据分析和数学建模的素养在2020年的高考中主要考察学生在应用问题中构造抽样模型、识别抽样模型、收集数据等能力方法、主要以选择题、填空题形式出现、为中低档题目、重在考查抽样方法的应用1简单随机抽样(1)定义:设一个总体含有N个个体、从中逐个不放回地抽取n个个体作为样本(nN)、如果每次抽取时总体内的各个个体被抽到的机会都相等、就把这种抽样方法叫做简单随机抽样(2)最常用的简单随机抽样的方法:抽签法和随机数法2系统抽样(1)定义:当总体中的个体数目较多时、可将总体分成均衡的几个部分、然后按照事先定出的规则、从每一部分抽取一个个体得到所需要的样本、这种抽样方法叫做系统抽样(2)系统抽样的操作步骤假设要从容量为N的总体中抽取容量为n的样本先将总体的N个个体编号;确定分段间隔k、对编号进行分段、当(n是样本容量)是整数时、取k;在第1段用简单随机抽样确定第一个个体编号l(lk);按照一定的规则抽取样本、通常是将l加上间隔k得到第2个个体编号(lk)、再加k得到第3个个体编号(l2k)、依次进行下去、直到获取整个样本3分层抽样(1)定义:在抽样时、将总体分成互不交叉的层、然后按照一定的比例、从各层独立地抽取一定数量的个体、将各层取出的个体合在一起作为样本、这种抽样方法叫做分层抽样(2)应用范围:当总体是由差异明显的几个部分组成时、往往选用分层抽样4三种抽样方法的比较类别各自特点相互联系适用范围共同点简单随机抽样从总体中逐个抽取最基本的抽样方法总体中的个体数较少均为不放回抽样、抽样过程中每个个体被抽到的可能性相等系统抽样将总体平均分成几部分、按事先确定的规则分别在各部分中抽取在起始部分抽样时、采用简单随机抽样总体中的个体数较多分层抽样将总体分成几层、按各层个体数之比抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成1不论哪种抽样方法、总体中的每一个个体入样的概率是相同的2系统抽样是等距抽样、入样个体的编号相差的整数倍3分层抽样是按比例抽样、每一层入样的个体数为该层的个体数乘以抽样比思考辨析判断下列说法是否正确、正确的在它后面的括号里打“”、错误的打“”(1)分层抽样就是按比例抽样( )(2)简单随机抽样是一种不放回抽样( )(3)简单随机抽样每个个体被抽到的机会不一样、与先后有关( )(4)系统抽样在起始部分抽样时采用简单随机抽样( )(5)分层抽样中、每个个体被抽到的可能性与层数及分层有关( )(6)要从1002个学生中用系统抽样的方法选取一个容量为20的样本、需要剔除2个学生、这样对被剔除者不公平()答案:(1)(2)(3)(4)(5)(6)小题查验1(20xx市质检)为了解1 000名学生的学习情况、采用系统抽样的方法、从中抽取容量为40的样本、则分段的间隔为( )A50B40C25D20解析:C根据系统抽样的特点分段间隔为25.2总体由编号为01,02、19,20的20个个体组成利用下面的随机数表选取5个个体、选取方法从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字、则选出来的第5个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08 B07 C02 D01解析:D由题意知前5个个体编号为08,02,14,07,01.故选D.3某校老年、中年和青年教师的人数见下表、采用分层抽样的方法调查教师的身体状况、在抽取的样本中、青年教师有320人、则该样本的老年教师人数为()类别人数老年教师900中年教师1 800青年教师1 600合计4 300A.90 B100 C180 D300解析:C老年、中年和青年人数比为91816、老年人数为9180(人)、选C.4(20xx高考全国卷)某公司有大量客户、且不同年龄段客户对其服务的评价有较大差异为了解客户的评价、该公司准备进行抽样调查、可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样、则最合适的抽样方法是_解析:由题意、不同年龄段客户对其服务的评价有较大差异、故采取分层抽样法答案:分层抽样5(人教B版教材习题改编)某工厂平均每天生产某种机器零件大约10 000件、要求产品检验员每天抽取50件零件、检查其质量状况、采用系统抽样方法抽取、若抽取的第一组中的号码为0010、则第三组抽取的号码为_答案:0410考点一简单随机抽样(自主练透)1下列抽样试验中、适合用抽签法的有_从某厂生产的5 000件产品中抽取600件进行质量检验;从某厂生产的两箱(每箱18件)产品中抽取6件进行质量检验;从甲、乙两厂生产的两箱(每箱18件)产品中抽取6件进行质量检验;从某厂生产的5 000件产品中抽取10件进行质量检验解析:中总体的个体数较大、不适合用抽签法;中甲、乙两厂生产的产品质量可能差别较大、因此未达到搅拌均匀的条件、也不适合用抽签法;中总体容量和样本容量都较小、且同厂生产的产品可视为搅拌均匀了答案:2假设要考察某公司生产的500克袋装牛奶的三聚氰胺是否超标、现从800袋牛奶中抽取60袋进行检验、利用随机数表抽取样本时、先将800袋牛奶按000,001、799进行编号、如果从随机数表第7行第8列的数开始向右读、则得到的第4个样本个体的编号是_(下面摘取了随机数表第7行至第9行)874217533157245506887704744767217633502583921206766301637859169556671998105071751286735807443952387933211234297864560782524207443815510013429966027954解析:由随机数表、可以看出前4个样本的个体的编号是331,572,455,068.于是、第4个样本个体的编号是068.答案:068抽签法与随机数表法的适用情况(1)抽签法适用于总体中个体数较少的情况、随机数表法适用于总体中个体数较多的情况(2)一个抽样试验能否用抽签法、关键看两点:一是抽签是否方便;二是号签是否易搅匀一般地、当总体容量和样本容量都较小时可用抽签法考点二系统抽样(师生共研)典例(1)(20xx市模拟)为了解某高校高中学生的数学运算能力、从编号为0001,0002、20xx的2 000名学生中采用系统抽样的方法抽取一个容量为50的样本、并把样本编号从小到大排列、已知抽取的第一个样本编号为0003、则最后一个样本编号是()A0047B1663C1960D1963解析:D根据系统抽样方法知、抽样间隔为40、抽取的第一个样本编号为0003、则抽样编号为000340(n1);令n50、则最后一个样本编号是000340491 963.故选D.(2)(20xx全国卷)某学校为了解1 000名新生的身体素质、将这些学生编号为1,2、1 000、从这些新生中用系统抽样方法等距抽取100名学生进行体质测验若46号学生被抽到、则下面4名学生中被抽到的是()A8号学生 B200号学生C616号学生 D815号学生解析:C抽取间隔为1 00010010、且616465710、616号学生被抽到系统抽样的特点及抽样技巧(1)系统抽样的特点机械抽样、又称等距抽样、所以依次抽取的样本对应的号码就是一个等差数列、首项就是第1组所抽取样本的号码、公差为间隔数、根据等差数列的通项公式就可以确定每一组内所要抽取的样本号码(2)系统抽样时、如果总体中的个数不能被样本容量整除时、可以先用简单随机抽样从总体中剔除几个个体、然后再按系统抽样进行跟踪训练1现有60瓶矿泉水、编号从1到60、若用系统抽样方法从中抽取6瓶检验、则所抽到的个体编号可能是()A5,10,15,20,25,30 B2,14,26,28,42,56C5,8,21,36,48,54 D3,13,23,33,43,53解析:D若用系统抽样方法从中抽取6瓶检验、则样本间隔为60610、只有3,13,23,33,43,53满足条件故选D.2一个总体中有90个个体、随机编号0,1,2、89、依从小到大的编号顺序平均分成9个小组、组号依次为1,2,3、9.现抽取一个容量为9的样本、规定如果在第1组随机抽取的号码为m、那么在第k组中抽取的号码个位数字与mk的个位数字相同、若m8、则在第8组中抽取的号码是_解析:由题意知、m8、k8、则mk16.也就是第8组抽取的号码个位数字为6、十位数字为817、故在第8组中抽取的号码为76.答案:763已知某单位有40名职工、现要从中抽取5名职工、将全体职工随机按140编号、并按编号顺序平均分成5组按系统抽样方法在各组内抽取一个号码(1)若第1组抽出的号码为2、则所有被抽出职工的号码为_;(2)分别统计这5名职工的体重(单位:千克)、获得体重数据的茎叶图如图所示、则该样本的方差为_.解析:(1)由题意知被抽出职工的号码为2,10,18,26,34.(2)由茎叶图知5名职工体重的平均数69、则该样本的方差s2(5969)2(6269)2(7069)2(7369)2(8169)262.答案:(1)2,10,18,26,34(2)62考点三分层抽样(多维探究)命题角度1分层抽样的有关计算1(20xx“江南十校”联考)我国全面二孩政策实施后、某中学的一个学生社团组织了一项关于生育二孩意愿的调查活动已知该中学所在的城镇符合二孩政策的已婚女性中、30岁以下的约2 400人、30岁至40岁的约3 600人、40岁以上的约6 000人为了解不同年龄层的女性对生育二孩的意愿是否存在显著差异、该社团用分层抽样的方法从中抽取了一个容量为N的样本进行调查、已知从30岁至40岁的女性中抽取的人数为60、则N_.解析:由题意可得、故N200.答案:200分层抽样的步骤(1)将总体按一定标准分层;(2)计算各层的个体数与总体数的比、按各层个体数占总体数的比确定各层应抽取的样本容量;(3)在每一层进行抽样(可用简单随机抽样或系统抽样)跟踪训练(20xx日照一模)九章算术第三章“衰分”中有如下问题:“今有甲持钱五百六十、乙持钱三百五十、丙持钱一百八十、凡三人俱出关、关税百钱、欲以钱数多少衰出之、问各几何?”其意为:“今有甲带了560钱、乙带了350钱、丙带了180钱、三人一起出关、共需要交关税100钱、依照钱的多少按比例出钱”、则乙应出(所得结果四舍五入、保留整数)钱数为()A17B28C30D32解析:D根据分层抽样原理、抽样比例为、所以乙应交关税为35032(钱)故选D.命题角度2与频率分布相结合问题2(20xx市考试)20xx年3月中华人民共和国第十三届全国人民代表大会第一次会议和中国人民政治协商会议第十三届全国委员会第一次会议在北京胜利召开、两会是年度中国政治生活中的一件大事、受到了举国上下和全世界的广泛关注为及时宣传国家政策、贯彻两会精神、某校举行了全国两会知识竞赛、为了解本次竞赛成绩情况、随机抽取了部分学生的成绩(得分均为整数、满分100分、最低分不低于50分)进行统计、得出频率分布表如下:组号分组频数频率第1组50,60)40.04第2组60,70)ab第3组70,80)14c第4组80,90)280.28第5组90,100420.42合计n1.00(1)求表中a、b、c、n的值;(2)若从成绩较好的第3、4、5组中用分层抽样的方法抽取6人担任两会知识宣传员、再从这6人中随机选出2人负责整理两会相关材料、求这2人中至少有1人来自第4组的概率解:(1)由频率分布表得n100、a100414284212、b0.12、c0.14.(2)第3、4、5组共有84名学生、利用分层抽样在84名学生中抽取6名学生、每组人数分别为:第3组:141(人)、第4组:282(人)、第5组:423人、第3、4、5组应分别抽取1人、2人、3人记第3组的1位同学为A、第4组的2位同学为B1、B2、第5组的3位同学为C1、C2、C3、则从6位同学中抽2位同学有15种可能、分别为:(A、B1)、(A、B2)、(A、C1)、(A、C2)、(A、C3)、(B1、B2)、(B1、C1)、(B1、C2)、(B1、C3)、(B2、C1)、(B2、C2)、(B2、C3)、(C1、C2)、(C1、C3)、(C2、C3)、其中第4组至少有1人入选的有9种、分别为:(A、B1)、(A、B2)、(B1、B2)、(B1、C1)、(B1、C2)、(B1、C3)、(B2、C1)、(B2、C2)、(B2、C3)、这2人中至少有1人来自第4组的概率为P.高考中常把分层抽样、频率分布、概率综合起来进行考查、反映了当前高考的命题方向这类试题难度不大、但考查的知识面较为宽广、在解题中要注意准确使用所学知识、不然在一个点上的错误就会导致整体失误命题角度3与概率相结合问题3(20xx高考天津卷)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160、现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A、B、C、D、E、F、G表示、现从中随机抽取2名同学承担敬老院的卫生工作()试用所给字母列举出所有可能的抽取结果;()设M为事件“抽取的2名同学来自同一年级”、求事件M发生的概率解:(1)由已知、甲、乙、丙三个年级的学生志愿者人数之比为322、由于采用分层抽样的方法从中抽取7名同学、因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人、2人、2人(2)()从抽出的7名同学中随机抽取2名同学的所有可能结果为A、B、A、C、A、D、A、E、A、F、A、G、B、C、B、D、B、E、B、F、B、G、C、D、C、E、C、F、C、G、D、E、D、F、D、G、E、F、E、G、F、G、共21种()由(1)、不妨设抽出的7名同学中、来自甲年级的是A、B、C、来自乙年级的是D、E、来自丙年级的是F、G、则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为A、B、A、C、B、C、D、E、F、G、共5种所以、事件M发生的概率为P(M).分层抽样与概率相结合的题目、都比较简单、分层抽样只是一个载体、一般作为第一、二问出现、主要考察概率问题、做题时注意考察内容的转化1(20xx市一模)为了解某地区的“微信健步走”活动情况、拟从该地区的人群中抽取部分人员进行调查、事先已了解到该地区老、中、青三个年龄段人员的“微信健步走”活动情况有较大差异、而男女“微信健步走”活动情况差异不大在下面的抽样方法中、最合理的抽样方法是()A简单随机抽样B按性别分层抽样C按年龄段分层抽样 D系统抽样解析:C根据该地区老、中、青三个年龄段人员的“微信健步走”活动情况有较大差异、男女“微信健步走”活动情况差异不大;最合理的抽样方法是按年龄段分层抽样故选C.2为了调查老师对微课堂的了解程度、某市拟采用分层抽样的方法从A、B、C三所中学抽取60名教师进行调查、已知A、B、C三所学校中分别有180,270,90名教师、则从C学校中应抽取的人数为()A10B12C18D24解析:A根据分层抽样的特征、从C学校中应抽取的人数为6010. 故选A.3(20xx市一模)为了规范学校办学、省电教育厅督察组对某所高中进行了抽样调查、抽查到班级一共有52名学生、现将该班学生随机编号、用系统抽样的方法抽取一个容量为4的样本、已知7号、33号、46号同学在样本中、那么样本中还有一位同学的编号应是()A13 B19 C20 D52解析:C用系统抽样抽出的四个学生的号码从小到大:7、?、33,46成等差数列、因此、另一学生编号为7463320.故选C.4(20xx大连调研)某单位有840名职工、现采用系统抽样方法抽取42人做问卷调查、将840人按1,2、840随机编号、则抽取的42人中、编号落入区间481,720的人数为()A11 B12 C13 D14解析:B由系统抽样定义可知、所分组距为20、每组抽取一个、因为包含整数个组、所以抽取个体在区间481,720的数目为(720480)2012.5(20xx市一模)中国诗词大会的播出引发了全民的读书热、某小学语文老师在班里开展了一次诗词默写比赛、班里40名学生得分数据的茎叶图如图所示若规定得分不小于85分的学生得到“诗词达人”的称号、小于85分且不小于70分的学生得到“诗词能手”的称号、其他学生得到“诗词爱好者”的称号、根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生、则抽选的学生中获得“诗词达人”称号的人数为()A2 B4 C5 D6解析:A由茎叶图可得、获”诗词达人”称号的有8人、据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生、设抽选的学生中获得“诗词达人”称号的人数为n、解得n2人故选A.6某地有居民100 000户、其中普通家庭99 000户、高收入家庭1 000户从普通家庭中以简单随机抽样方式抽取990户、从高收入家庭中以简单随机抽样方式抽取100户进行调查、发现共有120户家庭拥有3套或3套以上住房、其中普通家庭50户、高收入家庭70户依据这些数据并结合所掌握的统计知识、你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是_解析:因为99099 0001100、所以普通家庭中拥有3套或3套以上住房的大约为501005 000(户)又因为1001 000110、所以高收入家庭中拥有3套或3套以上住房的大约为7010700(户)所以约有5 0007005 700(户)故5 700100 000100%5.7%.答案:5.7%7利用随机数表法对一个容量为500、编号为000,001,002、499的产品进行抽样检验、抽取一个容量为10的样本、选取方法是从随机数表第12行第5列、第6列、第7列数字开始由左到右依次选取三个数字(下面摘取了随机数表中的第11行至第12行)、根据下表、读出的第3个数是_18 18 07 92 45 44 17 16 58 09 79 83 86 19 62 06 76 50 03 10 55 23 64 05 0526 62 38 97 75 84 16 07 44 99 83 11 46 32 24 20 14 85 88 45 10 93 72 88 71解析:最先读到的数据的编号是389、向右读下一个数是7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全球电商市场趋势报告
- 新能源变革之路智慧储能技术的崛起与应用分析
- 内蒙古美术职业学院《法理学专题研究》2023-2024学年第一学期期末试卷
- 山西机电职业技术学院《动画广告创作与实践》2023-2024学年第一学期期末试卷
- 无锡科技职业学院《果树生理》2023-2024学年第一学期期末试卷
- 厦门华厦学院《田径教学理论与实践》2023-2024学年第一学期期末试卷
- 湖北生物科技职业学院《“一带一路”倡议与区域国别研究》2023-2024学年第一学期期末试卷
- 成都理工大学《药学与生物医学导论》2023-2024学年第一学期期末试卷
- 曹妃甸职业技术学院《白描人物临摹》2023-2024学年第一学期期末试卷
- 湖北体育职业学院《中国现当代文学A(二)》2023-2024学年第一学期期末试卷
- 四好农村路培训
- 天津中考英语2020-2024年5年真题汇编-学生版-专题09 短文首字母填空
- 中山市第一中级人民法院保险纠纷审判白皮书(2021年-2023年)2024年11月
- 综合机电供应及安装专业分包工程机电系统调试方案
- 供应室安全目标
- 城市轨道交通车辆智慧运维系统技术规范
- 高等数学基础-005-国开机考复习资料
- 我与患者的故事护理
- 房屋贷款合同格式
- DB32T 2770-2015 活性炭纤维通 用技术要求与测试方法
- GB/T 25085.1-2024道路车辆汽车电缆第1部分:术语和设计指南
评论
0/150
提交评论