




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教学资料范本2020高考数学理二轮课标通用专题能力训练:立体几何中的向量方法含解析编 辑:_时 间:_15立体几何中的向量方法专题能力训练第36页一、能力突破训练1.如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG平面ADF;(2)求二面角O-EF-C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.解:依题意,OF平面ABCD,如图,以O为原点,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,依题意可得点O(0,0,0),A(-1,1,0),B(-1,-1,0),C(1,-1,0), D(1,1,0),E(-1,-1,2),F(0,0,2),G(-1,0,0).(1)证明:依题意,知=(2,0,0),=(1,-1,2).设n1=(x,y,z)为平面ADF的法向量,则不妨设z=1,可得n1=(0,2,1),又=(0,1,-2),可得n1=0,又因为直线EG平面ADF,所以EG平面ADF.(2)易证=(-1,1,0)为平面OEF的一个法向量.依题意,=(1,1,0),=(-1,1,2).设n2=(x,y,z)为平面CEF的法向量,则不妨设x=1,可得n2=(1,-1,1).因此有cos=-,于是sin=所以,二面角O-EF-C的正弦值为(3)由AH=HF,得AH=AF.因为=(1,-1,2),所以,进而有H,从而,因此cos=-所以,直线BH和平面CEF所成角的正弦值为2.如图,在三棱柱ABC-A1B1C1中,AA1底面ABC,ABC是边长为2的正三角形,AA1=3,D,E分别为AB,BC的中点.(1)求证:CD平面AA1B1B;(2)求二面角B-AE-B1的余弦值;(3)在线段B1C1上是否存在一点M,使BM平面AB1E?说明理由.答案:(1)证明在三棱柱ABC-A1B1C1中,AA1底面ABC,CD平面ABC,AA1CD.又ABC为等边三角形,D为AB的中点,CDAB.ABAA1=A,CD平面AA1B1B.(2)解取A1B1的中点F,连接DF.D,F分别为AB,A1B1的中点,DFAB.由(1)知CDAB,CDDF,如图,建立空间直角坐标系D-xyz.由题意,得A(1,0,0),B(-1,0,0),C(0,0,),A1(1,3,0),B1(-1,3,0),C1(0,3,),D(0,0,0),E-,0,=(-2,3,0).设平面AB1E的法向量n=(x1,y1,z1),则令x1=1,则y1=,z1=即n=易知平面BAE的一个法向量=(0,3,0).n=(0,3,0)=2,|=3,|n|=,cos=由题意知二面角B-AE-B1为锐角,它的余弦值为(3)解在线段B1C1上不存在点M,使BM平面AB1E.理由如下:假设在线段B1C1上存在点M,使BM平面AB1E,则0,1,使得=(1,0,),=(,0,).又=(0,3,0),=(,3,).由(2)可知,平面AB1E的一个法向量n=BM平面AB1E,当且仅当n,即R,使得=n=,则解得=0,1,这与0,1矛盾.故在线段B1C1上不存在点M,使BM平面AB1E.3.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120得到的,G是的中点.(1)设P是上的一点,且APBE,求CBP的大小;(2)当AB=3,AD=2时,求二面角E-AG-C的大小.解:(1)因为APBE,ABBE,AB,AP平面ABP,ABAP=A,所以BE平面ABP,又BP平面ABP,所以BEBP,又EBC=120.因此CBP=30.(2)(解法一)取的中点H,连接EH,GH,CH.因为EBC=120,所以四边形BEHC为菱形,所以AE=GE=AC=GC=取AG中点M,连接EM,CM,EC,则EMAG,CMAG,所以EMC为所求二面角的平面角.又AM=1,所以EM=CM=2在BEC中,由于EBC=120,由余弦定理得EC2=22+22-222cos 120=12,所以EC=2,因此EMC为等边三角形,故所求的角为60.(解法二)以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图所示的空间直角坐标系.由题意得点A(0,0,3),E(2,0,0),G(1,3),C(-1,0),故=(2,0,-3),=(1,0),=(2,0,3),设m=(x1,y1,z1)是平面AEG的一个法向量.由可得取z1=2,可得平面AEG的一个法向量m=(3,-,2).设n=(x2,y2,z2)是平面ACG的一个法向量.由可得取z2=-2,可得平面ACG的一个法向量n=(3,-,-2).所以cos=因此所求的角为60.4.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1EAD1;(2)在棱AA1上是否存在一点P,使得DP平面B1AE?若存在,求AP的长;若不存在,说明理由.解:以A为原点,的方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系(如图).设AB=a,则点A(0,0,0),D(0,1,0),D1(0,1,1),E,B1(a,0,1),故=(0,1,1),=(a,0,1),(1)证明:=-0+11+(-1)1=0,B1EAD1.(2)假设在棱AA1上存在一点P(0,0,z0),使得DP平面B1AE,此时=(0,-1,z0).又设平面B1AE的法向量n=(x,y,z).n平面B1AE,n,n,得取x=1,得平面B1AE的一个法向量n=要使DP平面B1AE,只要n,有-az0=0,解得z0=又DP平面B1AE,存在点P,满足DP平面B1AE,此时AP=5.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD平面ABCD,点M在线段PB上,PD平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.答案:(1)证明设AC,BD交点为E,连接ME.因为PD平面MAC,平面MAC平面PDB=ME,所以PDME.因为ABCD是正方形,所以E为BD的中点.所以M为PB的中点.(2)解取AD的中点O,连接OP,OE.因为PA=PD,所以OPAD.又因为平面PAD平面ABCD,且OP平面PAD,所以OP平面ABCD.因为OE平面ABCD,所以OPOE.因为ABCD是正方形,所以OEAD.如图建立空间直角坐标系O-xyz,则点P(0,0,),D(2,0,0),B(-2,4,0),=(4,-4,0),=(2,0,-).设平面BDP的法向量为n=(x,y,z),则令x=1,则y=1,z=于是n=(1,1,),平面PAD的法向量为p=(0,1,0).所以cos=由题知二面角B-PD-A为锐角,所以它的大小为(3)解由题意知M,C(2,4,0),设直线MC与平面BDP所成角为,则sin =|cos|=所以直线MC与平面BDP所成角的正弦值为6.如图,AB是半圆O的直径,C是半圆O上除A,B外的一个动点,DC垂直于半圆O所在的平面,DCEB,DC=EB,AB=4,tanEAB=(1)证明:平面ADE平面ACD;(2)当三棱锥C-ADE体积最大时,求二面角D-AE-B的余弦值.答案:(1)证明因为AB是直径,所以BCAC.因为CD平面ABC,所以CDBC.因为CDAC=C,所以BC平面ACD.因为CDBE,CD=BE,所以四边形BCDE是平行四边形,所以BCDE,所以DE平面ACD.因为DE平面ADE,所以平面ADE平面ACD.(2)解依题意,EB=ABtanEAB=4=1.由(1)知VC-ADE=VE-ACD=SACDDE=ACCDDE=ACBC(AC2+BC2)=AB2=,当且仅当AC=BC=2时等号成立.如图,建立空间直角坐标系,则点D(0,0,1),E(0,2,1),A(2,0,0),B(0,2,0),则=(-2,2,0),=(0,0,1),=(0,2,0),=(2,0,-1).设平面DAE的法向量为n1=(x,y,z),则取n1=(1,0,2).设平 面ABE的法向量为n2=(x,y,z),则取n2=(1,1,0),所以cos=可以判断与二面角D-AE-B的平面角互补,所以二面角D-AE-B的余弦值为-二、思维提升训练7.(20xx全国,理19)由矩形ADEB,RtABC和菱形BFGC组成的一个平面图形如图所示,其中AB=1,BE=BF=2,FBC=60.将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC平面BCGE;(2)求图2中的二面角B-CG-A的大小.答案:(1)证明由已知得ADBE,CGBE,所以ADCG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得ABBE,ABBC,故AB平面BCGE.又因为AB平面ABC,所以平面ABC平面BCGE.(2)解作EHBC,垂足为H.因为EH平面BCGE,平面BCGE平面ABC,所以EH平面ABC.由已知,菱形BCGE的边长为2,EBC=60,可求得BH=1,EH=以H为坐标原点,的方向为x轴的正方向,建立如图所示的空间直角坐标系H-xyz,则A(-1,1,0),C(1,0,0),G(2,0,),=(1,0,),=(2,-1,0).设平面ACGD的法向量为n=(x,y,z),则所以可取n=(3,6,-).又平面BCGE的法向量可取为m=(0,1,0),所以cos=因此二面角B-CG-A的大小为30.8.如图,平面PAD平面ABCD,四边形ABCD为正方形,PAD=90,且PA=AD=2;E,F,G分别是线段PA,PD,CD的中点. 1)求证:PB平面EFG;(2)求异面直线EG与BD所成的角的余弦值;(3)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离为?若存在,求出CQ的值;若不存在,请说明理由.解:平面PAD平面ABCD,且PAD=90,PA平面ABCD,而四边形ABCD是正方形,即ABAD.故可建立如图所示的空间直角坐标系,则点A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0).(1)证明:=(2,0,-2),=(0,-1,0),=(1,1,-1),设=s+t,即(2,0,-2)=s(0,-1,0)+t(1,1,-1),解得s=t=2,=2+2又不共线,共面.PB平面EFG,PB平面EFG.(2)=(1,2,-1),=(-2,2,0),=(1,2,-1)(-2,2,0)=1(-2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 货币操作手册编写风险评估报告
- 面向2025年无人机物流配送行业应用创新与技术创新报告
- 2025年医药电商平台运营模式创新与合规管理战略规划研究
- 葡萄酒产区特色与品牌国际化品牌合作模式与市场拓展研究报告
- 高速公路智能交通系统2025年智能交通与智慧城市协同发展报告
- 简约购销合同模板
- 2025年药物研发新视角:创新药物靶点发现与验证技术前沿探讨报告
- 中医理论考试题库及答案
- 中医全科培训试题及答案
- 乡村旅游接待设施2025年服务品质评估报告
- 《向长庚医院学管理》读后感
- 《建筑防水工程技术规程》
- DB11-T 1754-2024 老年人能力综合评估规范
- 《献给阿尔吉侬的花束》读书分享
- 电力项目全过程咨询服务方案
- T-CASME 1610-2024 淤泥土固化加固与处置技术规程
- 商用汽车金融方案
- 医药行业生产成本管控方案
- 上海市崇明区九校2024-2025学年六年级(五四制)上学期期中英语试题
- 预拌混凝土试验室作业指导书(完整版)
- 2024年10月自考00312政治学概论试题及答案含评分参考
评论
0/150
提交评论