2020高考数学理二轮课标通用专题能力训练:三角变换与解三角形含解析.docx_第1页
2020高考数学理二轮课标通用专题能力训练:三角变换与解三角形含解析.docx_第2页
2020高考数学理二轮课标通用专题能力训练:三角变换与解三角形含解析.docx_第3页
2020高考数学理二轮课标通用专题能力训练:三角变换与解三角形含解析.docx_第4页
2020高考数学理二轮课标通用专题能力训练:三角变换与解三角形含解析.docx_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教学资料范本2020高考数学理二轮课标通用专题能力训练:三角变换与解三角形含解析编 辑:_时 间:_专题能力训练10三角变换与解三角形专题能力训练第26页一、能力突破训练1.在ABC中,内角A,B,C的对边分别为a,b,c.已知c=3+1,b=2,A=3,则B=()A.34B.6C.4D.4或34答案:C解析:由余弦定理可得a=b2+c2-2bccosA=4+(3+1)2-2(3+1)=6.由正弦定理可得sin B=bsinAa=2326=22.ba,B为锐角,B=4.2.已知cos(-2)sin-4=-22,则sin +cos 等于()A.-72B.72C.12D.-12答案:D解析:cos(-2)sin-4=-cos2sin-4=sin2-2sin-4=2cos-4=2cos +2sin =-22,sin +cos =-12,故选D.3.在ABC中,角A,B,C的对边分别为a,b,c.若(a2+c2-b2)tan B=3ac,则角B的值为()A.6B.3C.6或56D.3或23答案:D解析:由(a2+c2-b2)tan B=3ac,得a2+c2-b22ac=32cosBsinB,即cos B=32cosBsinB,则sin B=32.0B0,所以A0,4,于是sin A+sin C=sin A+sin2-2A=sin A+cos 2A=-2sin2A+sin A+1=-2sinA-142+98.因为0A4,所以0sin A22,因此22-2sinA-142+9898.由此可知sin A+sin C的取值范围是22,98.11.设f(x)=sin xcos x-cos2x+4.(1)求f(x)的单调区间;(2)在锐角三角形ABC中,角A,B,C的对边分别为a,b,c.若fA2=0,a=1,求ABC面积的最大值.解:(1)由题意知f(x)=sin2x2-1+cos2x+22=sin2x2-1-sin2x2=sin 2x-12.由-2+2k2x2+2k,kZ,可得-4+kx4+k,kZ;由2+2k2x32+2k,kZ,可得4+kx34+k,kZ.所以f(x)的单调递增区间是-4+k,4+k(kZ);单调递减区间是4+k,34+k(kZ).(2)由fA2=sin A-12=0,得sin A=12,由题意知A为锐角,所以cos A=32.由余弦定理a2=b2+c2-2bccos A,得1+3bc=b2+c22bc,即bc2+3,且当b=c时等号成立.因此12bcsin A2+34.所以ABC面积的最大值为2+34.二、思维提升训练12.若02,-20,cos4+=13,cos4-2=33,则cos+2等于()A.33B.-33C.539D.-69答案:C解析:cos4+=13,02,sin4+=223.又cos4-2=33,-20,sin4-2=63,cos+2=cos4+-4-2=cos4+cos4-2+sin4+sin4-2=1333+22363=539.13.在ABC中,角A,B,C所对的边分别为a,b,c,且满足csin A=acos C.当3sin A-cosB+4取最大值时,角A的大小为()A.3B.4C.6D.23答案:A解析:由正弦定理,得sin Csin A=sin Acos C.因为0A0,从而sin C=cos C.又cos C0,所以tan C=1,则C=4,所以B=34-A.于是3sin A-cosB+4=3sin A-cos(-A)=3sin A+cos A=2sinA+6.因为0A34,所以6A+60,tan Btan C0,所以tan A+2tan Btan C22tanAtanBtanC,当且仅当tan A=2tan Btan C时,等号成立,即tan Atan Btan C22tanAtanBtanC,解得tan Atan Btan C8,即最小值为8.17.在ABC中,三个内角A,B,C所对的边分别为a,b,c,3C2,且ba-b=sin2CsinA-sin2C.(1)判断ABC的形状;(2)若|BA+BC|=2,求BABC的取值范围.解:(1)由ba-b=sin2CsinA-sin2C及正弦定理,得sin B=sin 2C,B=2C或B+2C=.若B=2C,3C2,23B(舍去).若B+2C=,又A+B+C=,A=C,ABC为等腰三角形.(2)|BA+BC|=2,a2+c2+2accos B=4.又由(1)知a=c,cos

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论