




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2 常见函数一、 一次函数和常函数:思维导图:(一) 、一次函数 (二)、常函数定义域:(- ,+ ) 定义域: (- ,+ )值 域:(- ,+ ) 正 k=0 反 值 域: b 解析式:y = kx + b( k 0 ) 解析式:y = b ( b为常数)图 像:一条与x轴、y轴相交的直线 图 像:一条与x轴平行或重合的直线 y b0 b=0 b0 o x 0 x o x b=0 b0 b 0 k 0 ,在(- ,+ ) 单调性:在(- ,+ )上不单调 k 0 k 0,(- ,0),(0,+ ) 单调性:在和上 k 0 、对任意 a0且a1, 都有 a01 log a 10同样易知: log a a1、对数恒等式:如果把 abN 中的 b写成 log a N, 则有 aN、指数恒等式:、常用对数我们通常将以10为底的对数叫做常用对数。为了简便,N的常用对数例如:log 105简记作lg 5 log103.5简记作lg3.5.、自然对数在科学技术中常常使用以无理数e2.71828为底的对数,以e为底的对数叫自然对数,为了简便,N的自然对数。例如:loge3简记作ln3 loge10简记作ln10(4).运算性质:若a0,a1,M0,N0,则(1) ;(2) ;(3) 【现在我们来证明运算性质,为了利用已知的幂的运算性质,应将对数形式根据对数的定义转化为指数形式,因此需要引进中间变量,起一定的过渡作用】.证明:(1)设logaMp,logaNq由对数的定义得:Map,Naq MNapaqap+q再由对数定义得logaMNpq,即证得logaMNlogaMlogaN(2)设logaMp,logaNq 由对数的定义可以得Map,Naq, apq,再由对数的定义得 logapq即证得logalogaMlogaN(3)设logaMp 由对数定义得MapMn(ap)nanp 再由对数定义得logaMnnp 即证得logaMnnlogaM例:计算:(1)lg142lglg7lg18 (2) (3) 【解析】(1)、解法一:lg142lglg7lg18lg(27)2(lg7lg3)lg7lg(322)lg2lg72lg72lg3lg72lg3lg20解法二:lg142lglg7lg18lg14lg()2lg7lg18lglg10(2)(3)(5).对数换底公式:证明:设log a Nx , 则 axN 两边取以m为底的对数:log m axlog m Nx log m alog m N 从而得:x log a N两个常用的推论: 证:log a blog b a1 log bnlog a b 例:设 x、y、z(0,)且3x4y6z 1 求证 ; 2 比较3x,4y,6z的大小 证明1:设3x4y6zk x、y、z(0,) k1 取对数得:x, y, z 2 3x4y()lgklgk0 3x4y 又4y6z()lgklgk0 4y6z 3x4y6z (二)、指数函数、对数函数和幂函数已知,我们从函数的角度分别研究这三者之间的关系:关系一:N如何随着b的变化而变化以指数为自变量、以幂为因变量的函数指数函数;关系二:N如何随着a的变化而变化以底数为自变量、以幂为因变量的函数幂函数;关系三:a如何随着b的变化而变化(指数为自变量、幂为因变量) 指数函数;+ 关系四:b如何随着N的变化而变化(以真数为自变量、以对数为因变量) 对数函数;关系五:a如何随着N的变化而变化(以底数为自变量、幂为因变量) 指数函数关系六:b如何随着a的变化而变化; 定义:函数叫做指数函数,其中x是自变量。 函数叫做对数函数。 函数叫做幂函数,其中x是自变量。1、指数函数 2、对数函数定义域:(- ,+ ) 定义域:(0,+ )值 域:(0,+ ) 值 域:(- ,+ )解析式: 解析式:图 像:位于x 轴上方,向x轴无限接近 图 像:位于y轴右侧,向y轴无限接近 y y y y 1 1 0 x 0 x 0 1 x 0 1 x 【特殊点】恒过(0,1),(1,a) 【特殊点】恒过(1,0),(a,1)【y = 1】 【x = 1】 或 或 或 或 【底数的大小】 y 【底数的大小】 y x 0 x 0 单调性: 单调性: 奇偶性:无 奇偶性:无周期性:无 周期性:无反函数: 反函数: 3、幂函数问题1:我们知道,分数指数幂可以与根式相互转化把下列各函数先化成根式形式,再指出它的定义域和奇偶性利用计算机画出它们的图象,观察它们的图象,看有什么共同点?(1)y;(2)y;(3)y;(4)y思路:先将各式化为根式形式,函数的定义域就是使这些根式有意义的实数x的集合;奇偶性直接利用定义进行判断(1)定义域为0,),(2)(3)(4)定义域都是R;其中(1)既不是奇函数也不是偶函数,(2)是奇函数,(3)(4)是偶函数它们的图象都经过点(0,0)和(1,1),且在第一象限内函数单调递增问题2:仿照问题1研究下列函数的定义域和奇偶性,观察它们的图象看有什么共同点?(1)yx1;(2)yx2;(3)y;(4)y思路:先将负指数幂化为正指数幂,再将分数指数幂化为根式,函数的定义域就是使这些分式和根式有意义的实数x的集合;(1)(2)(4)的定义域都是x|x0,(3)的定义域是(0,);(1)(4)是奇函数,(2)是偶函数,(3)既不是奇函数也不是偶函数它们的图象都经过点(1,1),且在第一象限内函数单调递减,并且以两坐标轴为渐近线总结:研究幂函数时,通常先将负指数幂化为正指数幂,再将分数指数幂化为根式(幂指数是负整数时化为分式);根据得到的分式或根式研究幂函数的性质函数的定义域就是使这些分式和根式有意义的实数x的集合;奇偶性和单调性直接利用定义进行判断问题1和问题2中的这些幂函数我们要记住它们图象的变化趋势,有利于我们进行类比【五个重要的幂函数】:(1);(2);(3);(4);(5) 定义域值域奇偶性单调性定点【幂函数性质】(1)所有的幂函数在(0,+)都有定义,并且图象都过点(1,1);(2)时,幂函数的图象通过原点,并且在区间上是增函数特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;(3)时,幂函数的图象在区间上是减函数在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴例1讨论函数y的定义域、值域、奇偶性、单调性,并画出图象的示意图思路:函数y是幂函数(1)要使y有意义,x可以取任意实数,故函数定义域为R(2)xR,x20 y0(3)f(x)f(x),函数y是偶函数;(4)n0,幂函数y在0,上单调递增由于幂函数y是偶函数,幂函数y在(,0)上单调递减(5)其图象如右图所示例2比较下列各组中两个数的大小:(1)1.5,1.7;(2)0.71.5,0.61.5;(3)(1.2),(1.25)解析:(1)考查幂函数y的单调性,在第一象限内函数单调递增, 1.51.7 1.51.7(2)考查幂函数y的单调性,同理0.71.50.61.5(3)先将负指数幂化为正指数幂可知它是偶函数,(1.2)1.2,(1.25)1.25,又1.21.25 (1.2)(1.25) 点评:比较幂形式的两个数的大小,一般的思路是:(1)若能化为同指数,则用幂函数的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025天津中国海油加油站招聘笔试参考题库附答案解析
- 2025四川绵阳长虹美菱中国区营销总部招聘智能交易中心平台产品运维管理岗位1人考试参考题库附答案解析
- 2025云南师范大学招聘教学管理人员30人笔试参考题库附答案解析
- 毕业论文系工作总结
- 2025四川阿坝州汶川县医疗卫生辅助岗招募7人考试模拟试题及答案解析
- 化学专业毕业论文格
- 专升本机械专业毕业论文
- 2025山西华远国际陆港集团所属企业社会招聘40人笔试备考试题及答案解析
- 2025年知识产权交易股东权益分配合同
- 简单个人房屋买卖合同
- 卫生部《病历书写基本规范》解读(73页)
- 南方332全站仪简易使用手册
- 分汽缸安装施工方案1
- 人民调解员培训讲稿村级人民调解员培训.doc
- 高低压配电安装工程-技术标部分(共41页)
- 开业筹备(西餐厅采购物品)
- 日产700吨平板玻璃电助熔窑炉设计本科毕业论文
- 光缆熔接光纤熔接
- 图画捉迷藏-A4打印版
- 受限空间作业票
- 盘扣式外脚手架施工方案
评论
0/150
提交评论