




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次不等式及其解法(第二课时)教学目标: (1)理解二次函数、一元二次方程、一元二次不等式的关系. (2)熟练掌握一元二次不等式的解法. (3)掌握含参数的一元二次不等式的解法及简单的不等式中的恒成立问题的解题方法. (4)培养学生数形结合的能力,分类讨论的思想方法,培养抽象概括能力和逻辑思维能力;教学重难点: 1、一元二次不等式的解法. 2、含参数的一元二次不等式以及不等式中的恒成立问题.教学过程: 一、复习回顾,引入新课 1、二次函数、一元二次方程、一元二次不等式之间的关系是什么?的图象的根不相等的两实根相等的两实根无实根的解集R的解集 2、解一元二次不等式的基本步骤是什么? (1)化不等式为标准形式:或。 (2)求方程的根。 (3)画出函数的图像。 (4)由图像找出不等式的解集。 即:转化、求根、画图、找解。二、讲授新课: 例题1. 一元二次不等式的解法: 解不等式:教师展示做题步骤: 解:原不等式可化为: 因为的两根分别为、 所以原不等式的解集为变式训练:解下列不等式: (1) (2) 学生演板: (1) 解:原不等式可化为: 因为 所以原不等式的解集为 学生复述做题过程: (2)解:原不等式可化为: 因为的两根分别为、 所以原不等式的解集为 例题2. 已知解集,求参数的取值或取值范围。 关于的不等式的解集为 ,则 。 师生共同参与: 解:由题意可知:方程的两根分别为、 由根与系数的关系可得: , 所以, 变式训练:关于的不等式 的解集为 ,求、的值。 学生先讨论,再做题,并复述做题过程: 解:由题意可知: 的两根分别为: 、 并且 由根与系数的关系得: , 所以 ,. 例题3. 不等式中的恒成立问题。 师生共同参与: 例题:如果关于x的不等式:的解集为R,求实数 的取值范围. 解:当 时,原不等式可化为:,恒成立; 当 时,应满足: 即 综上:实数 a 的取值范围为 备用练习:不等式的解集为R,求的取值范围 。 学生演版,并找其他同学进行评价: 解:当 原不等式可化为:与题意不符; 当应满足: 解得: 故m的求取值范围为 三、课堂小结: 1、一元二次不等式与一元二次方程、二次函数的关系; 2、解一元二次不等式的一般步骤; 3、一元二次不等式的解与一元二次方程的根的关系的应用; 4、与一元二次不等式有关的恒成立问题的解法。四、布置作业: 1、必做题 解下列不等式: (1) (2) 2、选做题 (1)若函数 对一切都有意义,求的取值范围。 (2)若函数 的定义域为R,求的取值范围。精美句子1、善思则能“从无字句处读书”。读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。读大海,读出了它气势磅礴的豪情。读石灰,读出了它粉身碎骨不变色的清白。 2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂; 幸福是“春种一粒粟,秋收千颗子”的收获.幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。幸福是“零落成泥碾作尘,只有香如故”的圣洁。幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。幸福是“人生自古谁无死,留取丹心照汗青”的气节。3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。4、成功与失败种子,如果害怕埋没,那它永远不能发芽。鲜花,如果害怕凋谢,那它永远不能开放。矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。航船,如果害怕风浪,那它永远不能到达彼岸。5、墙角的花,当你孤芳自赏时,天地便小了。井底的蛙,当你自我欢唱时,视野便窄了。笼中的鸟,当你安于供养时,自由便没了。山中的石!当你背靠群峰时,意志就坚了。水中的萍!当你随波逐流后,根基就没了。空中的鸟!当你展翅蓝天中,宇宙就大了。空中的雁!当你离开队伍时,危险就大了。地下的煤!你燃烧自己后,贡献就大了6、朋友是什么? 朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。7、一粒种子,可以无声无息地在泥土里腐烂掉,也可以长成参天的大树。 一块铀块,可以平庸无奇地在石头里沉睡下去,也可以产生惊天动地的力量。一个人,可以碌碌无为地
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度高铁线路工程技术人员专业服务合同
- 2025年商业银行金融业务流程优化与自动化解决方案合同
- 二零二五版电子信息工程建设项目技术顾问咨询服务合同
- 二零二五年度分布式光伏电力工程总承包合同
- 二零二五年度房产抵押贷款合同范本含环保产业政策支持条款
- 二零二五年股权融资顾问与投资风险管理及退出合同
- 二零二五年炊事员厨房用品租赁合同书
- 二零二五年度海洋能源开发合同-海商法.x
- 2025版车辆转让合同解除条件模板
- 二零二五年度物流企业代理记账服务合同样本
- 总代理授权书
- 越剧《梁山伯与祝英台》剧本
- 广东省广州市越秀区2024年八年级下学期期末英语试卷附答案
- 医疗器械售后服务能力证明资料模板
- (正式版)HGT 4144-2024 工业用二正丁胺
- 幼儿园低结构材料清单
- 注塑标准成型条件表电子表格模板
- 特种作业人员安全培训
- 《健康是1财富是》课件
- 压裂酸化安全要求
- 医用耗材赠送协议
评论
0/150
提交评论