全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
听课随笔第十一课时 函数的奇偶性(2)【学习导航】 学习要求 1熟练掌握判断函数奇偶性的方法;2熟练单调性与奇偶性讨论函数的性质;3能利用函数的奇偶性和单调性解决一些问题【精典范例】一函数的单调性和奇偶性结合性质推导:例1:已知y=f(x)是奇函数,它在(0,+)上是增函数,且f(x)0,试问:F(x)=在(,0)上是增函数还是减函数?证明你的结论思维分析:根据函数单调性的定义,可以设x1x20,进而判断:F(x1) F(x2)= =符号解:任取x1,x2(,0),且x1x20因为y=f(x)在(0,+上是增函数,且f(x)0,所以f(x2)f(x1)f(x1)0于是F(x1) F(x2)= 所以F(x)=在(,0)上是减函数。说明:一般情况下,若要证在区间上单调,就在区间上设二利用函数奇偶性求函数解析式:例2:已知是定义域为的奇函数,当x0时,f(x)=x|x2|,求x0,求实数m的取值范围追踪训练一1. 设是定义在R上的偶函数,且在0,+)上是减函数,则f()与f(a2a+1)()的大小关系是 ( ) A f()f(a2a+1)D与a的取值无关2. 定义在上的奇函数,则常数 , ;3. 函数是定义在上的奇函数,且为增函数,若,求实数a的范围。思维点拔:一、函数奇偶性与函数单调性关系若函数是偶函数,则该函数在关于对称的区间上的单调性是相反的,且一般情况下偶函数在定义域上不是单调函数;若函数是奇函数,则该函数在关于对称区间上的点调性是相同的追踪训练1已知是偶函数,其图象与轴共有四个交点,则方程的所有实数解的和是 ( ) 4 2 0 不能确定2. 定义在(,+)上的函数满足f(x)=f(x)且f(x)在(0,+)上,则不等式f(a)f(b)等价于( )A.abC.|a|b|D.0ab03. 是奇函数,它在区间(其中)上为增函数,则它在区间上( ) A. 是减函数且有最大值 B. 是减函数且有最小值 C. 是增函数且有最小值 D. 是增函数且有最大值4已知函数ax7+6x5+cx3+dx+8,且f(5)= 15,则f(5)= 5定义在实数集上的函数f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030缅甸柚木出口政策变动对中国家具制造业成本影响预测
- 2025-2030绿色环保型药用饲料研发动态与产业化前景展望
- 机械设备采购流程及合同标准范本
- 机电一体化项目设计方案实例
- 微缩施工方案
- 电力施工砍树施工方案
- 庄园参观活动方案策划
- 青少年成长关爱活动方案
- 重庆商场双十二活动方案
- 阅读寓言读书活动方案
- FZ/T 70006-2004针织物拉伸弹性回复率试验方法
- 提高水冷壁射线检测效率0328
- 冬季驾驶员安全教育培训课件
- 国开数字电子电路形考答案
- 中等职业学校学分制教学管理条例
- 写景散文阅读练习题
- 断路器试验精品课件
- 学生奖状印刷模板
- 光伏发电论文
- 同华轩岗电厂二期2×66万千瓦项目环评报告书
- 最新爆破安全规程
评论
0/150
提交评论