




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
探究中小学数学知识的衔接问题 一、从数到代数式 小学生在六年中学习的主要是具体的数以及具体的数之间的运算,而到了初一接触到的是用字母表示数,建立起了代数概念。在我们看来,“代数”,就是用字母来表示一个数,但实际上绝非如此。初一的数学先是讲了“用字母表示数”,然后就开始深入到了“方程”,再由此展开了“包含字母的式子”这一概念,然后又开始了关于“函数”的学习。 其实,细心的人会发现,初中里学习的内容多是小学内容的扩展。小学数学与初中数学实际上是有很多关联的。只要从小六到初一的过度在老师的引导下,找出“数”与“式”之间的内在联系以及区别,在知识间架起衔接的桥梁,也为后面的更多内容打下坚实的基础,这样才能在众多的考试面前不乱阵脚,游刃有余。 二、从“算术法”到“方程” 小学的应用题大多都可以用算术法来解题,所谓“算术法”就是指一个全部由数字和符号构成的式子,因为计算简便,成了小学六年来学生们解题的“主菜”,即使小学里学习了方程,但也只能算是“配菜”而已。可进入初中后就不同了:自从初一上学期详细的学习了一元一次方程后,渐渐的,凡是应用题第一反应就是设未知数列方程,而对原先的“算术法”没什么印象了。这是因为,用算术法来解应用题大多要用逆向思维,而方程所用的大多是正向思维,两者孰轻孰重一目了然。初中数学与小学数学的不同之处主要体现在知识范围与思维方式两个方面,要学好初中数学,一定要让自己的思维更富逻辑性,要学会用数学的眼光去发现问题,分析问题和解决问题。 经过十几年的教学经验和实践表明,培养学生把解题后的反思应用到整个数学学习过程中,养成检验、反思的习惯,是提高学习效果、培养能力的行之有效的方法。解题是学生学好数学的必由之路,但不同的解题指导思想就会有不同的解题效果,养成对解题后进行反思的习惯,即可作为学生解题的一种指导思想。 三、初中数学与小学数学如何衔接 初一代数教材,涉及数、式、方程和不等式,这些内容与小学数学中的算术数、简易方程、算术应用题等知识有关,但初一数学内容比小学内容更为丰富,抽象,复杂,在教学方法上也不尽相同;而小学学生的数学学习习惯和学习方法与中学生应有的学习习惯也不尽一致,因此,在教学过程中必须注意中小学数学的衔接 一)、内容上的衔接 1算术数与有理数小学数学是在算术数中研究问题的,而中学数学一开始就有有理数,因此,从算术数过渡到有理数是一大转折,为此,须抓住以下几点:(1)讲清楚具有相反意义的量,是引入负数的关键 这里,可以通过多举些学生熟悉的实际例子,使学生了解引入负数的必要性及负数的意义例如,如何区别零上温度和零下温度这两个具有相反意义的量呢? 又如,珠穆朗玛峰的海拔高度和吐鲁番盆地的海拔高度是具有相反意义的量等等,在教学中可以多举一些例子,让学生了解为了区别具有相反意义的量必须引入一种新的数负数 (2)逐步加深对有理数的认识 首先,让学生清楚地认识到有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数)这样,对有理数的概念的理解,运算的掌握就简便多了 其次,让学生清楚有理数的分类与小学的算术数相比只是多了负整数和负分数 (3)有理数的运算,其实是由两部分组成:小学学习过的运算加上中学学习过的“符号”确定,只要特别注意符号的确定,那么有理数的运算就不成为难点了 如:(2)+(4)先确定符号为“”再把数字部分相加即可,即(2)+(4)=(2+4)=6 2数与代数式从小学数学的特殊的、具体的数到中学的一般的、抽象的代数式,这是数学思维上的一次飞跃,因此,在教学时,要逐步引导学生过好这一关 (1)用字母表示数的必要性 以学生在小学学过的用字母表示数的例子,如:加法交换律a+b=b+a;乘法交换律ab=ba及一些公式如速度公式v=s/t正方形周长、面积公式L=4a,S=a2等,说明由字母表示数能简明、扼要地表达数量之间的关系可以更方便地研究和解决问题(2)加深对字母a的认识 许多学生由于对字母a表示数的意义理解不透,经常错误地认为a一定是负数,因此,在教学上必须帮助学生理解a的含义,知道a可能是负数,而a不一定是负数等问题首先让学生弄清楚符号“”的三种作用运算符号,如53表示5减3,24表示2减4;性质符号,如1表示负1,5+(3)表示5加上负3;在某个数前面加上“”号,表示该数的相反数,如3表示3的相反数,(3)表示3的相反数,a表示a的相反数然后再说明a表示有理数,可以是正数,可以是负数,亦可以是零即包括符号和数字,这样,学生才能真正理解a,a所包含的意义(3)加强数学语言的训练及列代数式的训练 如:a是正数表示为a0,a是负数表示为a 0,某数a的2倍表示为2a等 3算术解法与代数解法 在小学,解应用题采用算术解法,而中学需用代数解法(列方程)算术解法是把未知量放在特殊地位,设法通过已知量求出未知量;而代数解法是把所求的量与已知量放在平等的地位,找出各量之间的等量关系,建立方程而求出未知量另外,算术解法较强调套类型,而代数解法则重视灵活运用知识,培养分析问题和解决问题的能力,这是思维方法上的一大转折但学生开始往往习惯于用算术解法,而对用代数解法不适应,不知道如何找相等关系因此,在教学中必须做好这方面的衔接,让学生明白有些问题用算术解法是不方使的,最好用代数解法,只要找出相等关系,用等式表示出来就列出了方程,再利用解方程的方法,就可以求出未知数的值二)教法上的衔接初一学生的思维方式仍保留着小学生那种以直观、形象思维为主的特点因此,在教法上应注意研究小学的数学教学方法,吸取其中优点,针对初一学生的特点,改进教学方法1查缺补漏,搭好阶梯,注意新旧知识的衔接 初一代数第一章“代数初步知识”是以小学数学中的代数知识为基础的从用字母表示数一直到简易方程,在小学高年级数学课中占有相当大的比重,是对小学数学中的代数知识的比较系统的归纳与复习,但本章内容又是从初中代数学习的客观需要出发的,不是小学知识的简单重复因此,在教学中应注意发挥本章承上启下的作用,搞好新旧知识的衔接2从具体到抽象,特殊到一般,因材施教,改进教法(1)循序渐进 学生进入中学后,需逐步发展抽象思维能力但初一新生在小学听惯了详尽、细致、形象的讲解,如果刚一进入中学就遇到“急转弯”往往很不适应因此,教学过程中,不能一下子讲得过多、过快、过于抽象、过于概括,而仍要尽量地采用一些实物教具,让学生看得清楚,听得明白,逐步向图形的直观、语言的直观和文字的直观过渡,最后向抽象思维过渡例如:讲授相反数的概念可采用如下顺序再观察这几组数字本身的特点:只有符号不同引导学生自行得出相反数的概念(2)前后对比 在初一代数的教学过程,恰当地运用对比,能使学生加快理解和掌握新知识 例如,在学习一元一次不等式和一元一次不等式组时,由于初一的不等式知识体系的安排大体与方程知识体系的安排相同因此,在教学中,可把不等式与方程的意义、性质,不等式的解集与方程的解以及解一元一次不等式与解一元一次方程等对比着进行讲授,既说明它们的相同点,更要指出它们的不同点,揭示各自的特殊性这样,有助于学生尽快掌握不等式的有关知识,同时避免与方程的有关知识混淆(3)开拓思路 初一学生考虑问题较单纯,不善于进行全面深入的思考,对一个问题的认识,往往注意了这一面,忽视了另一面,只看到现象,看不到本质这种思维上的不成熟给科目
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025国考常州市市场监管岗位申论题库含答案
- 解析卷人教版八年级上册物理光现象《光的反射》同步训练试题(含答案解析)
- 歌曲《索尔维格之歌》的音乐特征与演唱分析
- 2025国考常州市出入境管理岗位申论预测卷及答案
- 解析卷-人教版八年级上册物理《机械运动》专题测评试卷(附答案详解)
- 东北三省基本公共服务供给水平测度及提升策略研究
- 2025国考白城市外交业务岗位行测必刷题及答案
- 考点解析人教版九年级物理《电流和电路》章节测试练习题(含答案详解)
- 达标测试人教版八年级上册物理声现象《声音的特性声的利用》必考点解析试题(含答案及解析)
- 高速公路出口交通流量管理方案
- 2025年共青团考试题库(附答案)
- 水果拼盘拼盘课件
- 项目策划工作检查考核表
- 习作:让生活更美好-完整版课件
- 最全浙江行业协会名单
- 访谈提纲格式4篇
- ACUSONX150西门子彩色多普勒超声系统
- 连铸坯中心缺陷控制
- GYB培训全课件(最终版)
- 合伙开饭店协议书的范本
- 大桥墩柱盖梁抱箍施工方案
评论
0/150
提交评论