二次函数y=ax2+bx+c(a≠0)的图象.ppt_第1页
二次函数y=ax2+bx+c(a≠0)的图象.ppt_第2页
二次函数y=ax2+bx+c(a≠0)的图象.ppt_第3页
二次函数y=ax2+bx+c(a≠0)的图象.ppt_第4页
二次函数y=ax2+bx+c(a≠0)的图象.ppt_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

九年级数学 下 第二章二次函数 4 二次函数y ax2 bx c的图象 1 函数y a x h 2和y a x h 2 K的图象和性质 你能用配方的方法把y 3x2 6x 5变形成y 3 x 1 2 2的形式吗 函数y ax bx c的图象 二次函数y 3x2 6x 5的图象是什么形状 它与我们已经作过的二次函数的图象有什么关系 由于y 3x2 6x 5 3 x 1 2 2 因此我们先作二次函数y 3 x 1 2的图象 2 在同一坐标系中作出二次函数y 3x2和y 3 x 1 2的图象 完成下表 并比较3x2和3 x 1 2的值 它们之间有什么关系 观察图象 回答问题 3 函数y 3 x 1 2的图象与y 3x2的图象有什么关系 它是轴对称图形吗 它的对称轴和顶点坐标分别是什么 想一想 在同一坐标系中作二次函数y 3 x 1 2的图象 会在什么位置 二次函数y 3 x 1 2与y 3x2的图象形状相同 可以看作是抛物线y 3x2整体沿x轴向右平移了1个单位 4 x取哪些值时 函数y 3 x 1 2的值随x值的增大而增大 x取哪些值时 函数y 3 x 1 2的值随x的增大而减少 想一想 在同一坐标系中作出二次函数y 3 x 1 2的图象 它的增减性会是什么样 真知从实践走来 1 在上面的坐标系中作出二次函数y 3 x 1 2的图象 它与二次函数y 3x2和y 3 x 1 2的图象有什么关系 它是轴对称图形吗 它的对称轴和顶点坐标分别是什么 在同一坐标系中作出二次函数y 3x2 y 3 x 1 2和y 3 x 1 2的图象 完成下表 并比较3x2 3 x 1 2和3 x 1 2的值 它们之间有什么关系 函数y a x h 2 a 0 的图象和性质 二次函数y 3 x 1 2与y 3x2的图象形状相同 可以看作是抛物线y 3x2整体沿x轴向左平移了1个单位 真知从实践走来 2 x取哪些值时 函数y 3 x 1 2的值随x值的增大而增大 x取哪些值时 函数y 3 x 1 2的值随x的增大而减少 请总结二次函数y a x h 2的图象和性质 猜一猜 函数y 3 x 1 2 y 3 x 1 2和y 3x2的图象的位置和形状 二次函数y 3 x 1 2 y 3 x 1 2和y 3x2的图象 二次函数y a x h 2的性质 X h X h 二次函数y a x h 2的性质 抛物线 顶点坐标 对称轴 位置 开口方向 y a x h 2 a 0 y a x h 2 a 0 h 0 h 0 直线x h 直线x h 在x轴的上方 除顶点外 在x轴的下方 除顶点外 向上 向下 二次函数y a x h 2的性质 抛物线 增减性 最值 y a x h 2 a 0 y a x h 2 a 0 当x h时 最小值为0 当x h时 最大值为0 在对称轴的左侧 y随着x的增大而减小 在对称轴的右侧 y随着x的增大而增大 在对称轴的左侧 y随着x的增大而增大 在对称轴的右侧 y随着x的增大而减小 我思 我进步 在同一坐标系中作出二次函数y 3x y 3 x 1 2和y 3 x 1 2 2的图象 二次函数y 3x y 3 x 1 2和y 3 x 1 2 2的图象有什么关系 它们的开口方向 对称轴和顶点坐标分别是什么 作图看一看 在同一坐标系中作出函数y 3x y 3 x 1 2和y 3 x 1 2 2的图象 完成下表 并比较3x2 3 x 1 2和3 x 1 2 2值 它们之间有何关系 函数y a x h 2 k a 0 的图象和性质 二次函数y 3 x 1 2 2的图象和抛物线y 3x y 3 x 1 2有什么关系 它的开口方向 对称轴和顶点坐标分别是什么 X 1 先猜一猜 再做一做 在同一坐标系中作二次函数y 3 x 1 2 2 会是什么样 X 1 二次函数y 3 x 1 2 2的图象与抛物线y 3x2和y 3 x 1 2有何关系 它的开口方向 对称轴和顶点坐标分别是什么 X 1 想一想 二次函数y 3 x 1 2 2和y 3x y 3 x 1 2的图象有什么关系 它们的开口方向 对称轴和顶点坐标分别是什么 再作图看一看 X 1 我思 我进步 在同一坐标系中作出二次函数y 3 x 1 2 2 y 3 x 1 2 2 y 3x 和y 3 x 1 2的图象 y X 1 先想一想 再总结二次函数y a x h 2 k的图象和性质 X 1 二次函数y a x h k与 ax 的关系 一般地 由y ax 的图象便可得到二次函数y a x h k的图象 y a x h k a 0 的图象可以看成y ax 的图象先沿x轴整体左 右 平移 h 个单位 当h 0时 向右平移 当h0时向上平移 当k 0时 向下平移 得到的 因此 二次函数y a x h k的图象是一条抛物线 它的开口方向 对称轴和顶点坐标与a h k的值有关 二次函数y a x h 2 k的图象和性质 抛物线 顶点坐标 对称轴 位置 开口方向 y a x h 2 k a 0 y a x h 2 k a 0 h k h k 直线x h 直线x h 由h和k的符号确定 由h和k的符号确定 向上 向下 抛物线 增减性 最值 y a x h 2 k a 0 y a x h 2 k a 0 当x h时 最小值为k 当x h时 最大值为k 在对称轴左侧 y随着x的增大而减小 在对称轴右侧 y随着x的增大而增大 在对称轴左侧 y随着x的增大而增大 在对称轴右侧 y随着x的增大而减小 悟出真谛 练出本事 1 指出下列函数图象的开口方向对称轴和顶点坐标 2 1 二次函数y 3 x 1 2的图象与二次函数y 3x2的图象有什么关系 它是轴对称图形吗 它的对称轴和顶点坐标分别是什么 2 二次函数y 3 x 2 2 4的图象与二次函数y 3x2的图象有什么关系 对于二次函数y 3 x 1 2 当x取哪些值时 y的值随x值的增大而增大 当x取哪些值时 y的值随x值的增大而减小 二次函数y 3 x 1 2 4呢 1 相同点 1 形状相同 图像都是抛物线 开口方向相同 2 都是轴对称图形 3 都有最 大或小 值 4 a 0时 开口向上 在对称轴左侧 y都随x的增大而减小 在对称轴右侧 y都随x的增大而增大 a 0时 开口向下 在对称轴左侧 y都随x的增大而增大 在对称轴右侧 y都随x的增大而减小 回味无穷 二次函数y a x h k与y ax 的关系 2 不同点 位置不同 1 顶点不同 分别是 h k 和 0 0 2 对称轴不同 分别是直线x h和y轴 3 最值不同 分别是k和0 二次函数y a x h k与y ax 的关系 3 联系 y a x h k a 0 的图象可以看成y ax 的图象先沿x轴整体左 右 平移 h 个单位 当h 0时 向右平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论