




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
此文档收集于网络,仅供学习与交流,如有侵权请联系网站删除高考递推数列题型分类归纳解析类型1 解法:把原递推公式转化为,利用累加法(逐差相加法)求解。例:已知数列满足,求。解:由条件知:分别令,代入上式得个等式累加之,即所以,变式: 已知数列,且a2k=a2k1+(1)k, a2k+1=a2k+3k, 其中k=1,2,3,.(I)求a3, a5;(II)求 an的通项公式.解:,即, 将以上k个式子相加,得将代入,得,。经检验也适合,类型2 解法:把原递推公式转化为,利用累乘法(逐商相乘法)求解。例1:已知数列满足,求。解:由条件知,分别令,代入上式得个等式累乘之,即又,例2:已知, ,求。解: 。变式:(2004,全国I,理15)已知数列an,满足a1=1, (n2),则an的通项 解:由已知,得,用此式减去已知式,得当时,即,又,将以上n个式子相乘,得类型3 (其中p,q均为常数,)。解法(待定系数法):把原递推公式转化为:,其中,再利用换元法转化为等比数列求解。例:已知数列中,求.解:设递推公式可以转化为即.故递推公式为,令,则,且.所以是以为首项,2为公比的等比数列,则,所以.变式:在数列中,若,则该数列的通项_(key:)变式:已知数列满足(I)求数列的通项公式;(II)若数列bn滿足证明:数列bn是等差数列;()证明:(I)解:是以为首项,2为公比的等比数列 即(II)证法一:,得即,得即是等差数列 证法二:同证法一,得令得设下面用数学归纳法证明(1)当时,等式成立 (2)假设当时,那么这就是说,当时,等式也成立 根据(1)和(2),可知对任何都成立 是等差数列 (III)证明:变式:递推式:。解法:只需构造数列,消去带来的差异类型4 (其中p,q均为常数,)。(或,其中p,q, r均为常数) 。解法:一般地,要先在原递推公式两边同除以,得:引入辅助数列(其中),得:再待定系数法解决。例:已知数列中,,,求。解:在两边乘以得:令,则,解之得:所以变式:设数列的前项的和,()求首项与通项;()设,证明:解:(I)当时,;当时,即,利用(其中p,q均为常数,)。 (或,其中p,q, r均为常数)的方法,解之得:()将代入得 Sn= (4n2n)2n+1 + = (2n+11)(2n+12) = (2n+11)(2n1) Tn= = = ( )所以, = ) = ( ) 0 , anan1=5 (n2) 当a1=3时,a3=13,a15=73 a1, a3,a15不成等比数列a13;当a1=2时, a3=12, a15=72, 有 a32=a1a15 , a1=2, an=5n3 变式: 已知数列an的前n项和Sn满足SnSn2=3求数列an的通项公式.解:,两边同乘以,可得令 又,。类型7 解法:这种类型一般利用待定系数法构造等比数列,即令,与已知递推式比较,解出,从而转化为是公比为的等比数列。例:设数列:,求.解:设,将代入递推式,得()则,又,故代入()得说明:(1)若为的二次式,则可设;(2)本题也可由 ,()两式相减得转化为求之.变式:已知数列中,在直线y=x上,其中n=1,2,3 ()令()求数列()设的前n项和,是否存在实数,使得数列为等差数列?若存在,试求出 若不存在,则说明理由 解:(I)由已知得 又是以为首项,以为公比的等比数列 (II)由(I)知,将以上各式相加得: (III)解法一:存在,使数列是等差数列 数列是等差数列的充要条件是、是常数即又当且仅当,即时,数列为等差数列 解法二:存在,使数列是等差数列 由(I)、(II)知,又当且仅当时,数列是等差数列 类型8 解法:这种类型一般是等式两边取对数后转化为,再利用待定系数法求解。例:已知数列中,求数列解:由两边取对数得,令,则,再利用待定系数法解得:。变式:已知数列(1)证明(2)求数列的通项公式an.解:用数学归纳法并结合函数的单调性证明:(1)方法一 用数学归纳法证明:1当n=1时, ,命题正确.2假设n=k时有 则 而又时命题正确.由1、2知,对一切nN时有方法二:用数学归纳法证明:1当n=1时,; 2假设n=k时有成立, 令,在0,2上单调递增,所以由假设有:即也即当n=k+1时 成立,所以对一切 (2)解法一:所以,又bn=1,所以解法二:由(I)知,两边取以2为底的对数,令,则或变式:已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中=1,2,3,(1) 证明数列lg(1+an)是等比数列;(2) 设Tn=(1+a1) (1+a2) (1+an),求Tn及数列an的通项;记bn=,求bn数列的前项和Sn,并证明Sn+=1 解:()由已知,两边取对数得,即是公比为2的等比数列 ()由()知 (*)=由(*)式得(), ,又,又, 类型9 解法:这种类型一般是等式两边取倒数后换元转化为。例:已知数列an满足:,求数列an的通项公式。解:取倒数:是等差数列,变式:已知数列an满足:a1,且an(1) 求数列an的通项公式;(2) 证明:对于一切正整数n,不等式a1a2an2n!解:(1)将条件变为:1,因此1为一个等比数列,其首项为1,公比,从而1,据此得an(n1)1(2)证:据1得,a1a2an为证a1a2an2显然,左端每个因式都是正数,先证明,对每个nN*,有1()3用数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行服务竞赛试题及答案
- 智能风控系统创新创业项目商业计划书
- 2025内蒙古呼伦贝尔农垦集团有限公司校园招聘50人笔试备考参考答案详解
- 2025内蒙古呼伦贝尔林业集团有限公司招聘工作人员5人笔试备考及答案详解(名校卷)
- 教师招聘之《幼儿教师招聘》考前冲刺测试卷讲解附参考答案详解【巩固】
- 押题宝典教师招聘之《小学教师招聘》通关考试题库含完整答案详解【易错题】
- 2025年教师招聘之《小学教师招聘》综合提升练习题及完整答案详解(有一套)
- 教师招聘之《小学教师招聘》综合练习带答案详解(突破训练)
- 押题宝典教师招聘之《幼儿教师招聘》模考模拟试题附答案详解(轻巧夺冠)
- 2025内蒙古呼伦贝尔旅业旅游集团股份公司招聘5人笔试备考及答案详解(有一套)
- 青少年脊柱侧弯筛查课件
- 河南考古勘探经费预算编制规范
- 220kV××输电线路工程预算实例
- 初中语文中考复习 专题01 名著阅读之《朝花夕拾》(课内文言文+课外文言文)-2022年中考语文一轮复习黄金考点讲练测
- GB/T 38207-2019中国地理实体通名汉语拼音字母拼写规则
- GB/T 25052-2010连续热浸镀层钢板和钢带尺寸、外形、重量及允许偏差
- GB/T 14181-2010测定烟煤粘结指数专用无烟煤技术条件
- 新生儿肺炎讲解课件
- 3.4 商品质量品级评定与质量监督
- 一年级谁比谁多练习题(比较实用)
- 油管的上扣扭矩表
评论
0/150
提交评论