第3讲等比数列及其前n项和.doc_第1页
第3讲等比数列及其前n项和.doc_第2页
第3讲等比数列及其前n项和.doc_第3页
第3讲等比数列及其前n项和.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第3讲等比数列及其前n项和一、填空题1设数列a前n项和为Sn,a1t,a2t2,Sn2(t1)Sn1tSn0,则an是_数列,通项an_.解析由Sn2(t1)Sn1tSn0,得Sn2Sn1t(Sn1Sn),所以an2tan1,所以t,又t,所以an成等比数列,且anttn1tn.答案等比tn2等比数列an的前n项和为Sn,8a2a50,则_.解 8a2a58a1qa1q4a1q(8q3)0q21q37.答案 73数列an为正项等比数列,若a22,且anan16an1(nN,n2),则此数列的前4项和S4_.解析由a1q2,a1qn1a1qn6a1qn2,得qn1qn6qn2,所以q2q6.又q0,所以q2,a11.所以S415.答案154已知等比数列an的前n项和Snt5n2,则实数t的值为_解析a1S1t,a2S2S1t,a3S3S24t,由an是等比数列知24t,显然t0,所以t5.答案55已知各项都为正数的等比数列an中,a2a44,a1a2a314,则满足anan1an2的最大正整数n的值为_解析由等比数列的性质,得4a2a4a(a30),所以a32,所以a1a214a312,于是由解得所以an8n1n4.于是由anan1an2a3(n3)n3,得n31,即n4.答案46在等比数列an中,an0,若a1a2a7a816,则a4a5的最小值为_解析 由已知a1a2a7a8(a4a5)416,所以a4a52,又a4a522(当且仅当a4a5时取等号)所以a4a5的最小值为2.答案 27已知递增的等比数列an中,a2a83,a3a72,则_.解析 an是递增的等比数列,a3a7a2a82,又a2a83,a2,a8是方程x23x20的两根,则a21,a82,q62,q3,q3.答案 8设1a1a2a7,其中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,则q的最小值为_解析由题意知a3q,a5q2,a7q3且q1,a4a21,a6a22且a21,那么有q22且q33.故q,即q的最小值为.答案9已知数列xn满足lg xn11lg xn(nN*),且x1x2x3x1001,则lg(x101x102x200)_.解析由lg xn11lg xn(nN*)得lg xn1lg xn1,10,数列xn是公比为10的等比数列,xn100xn10100,x101x102x20010100(x1x2x3x100)10100,lg(x101x102x200)lg 10100100.答案10010已知an是公差不为0的等差数列,bn是等比数列,其中a12,b11,a2b2,2a4b3,且存在常数,使得anlogbn对每一个正整数n时成立,则_.解析由题意,可设an2(n1)d,bnqn1,于是由得解得所以an2n,bn22n2,代入anlogbn,得2n(2n2)log2,即2n(1log2)2log2,所以解得故224.答案4二、解答题11在等差数列an中,a2a723,a3a829.(1)求数列an的通项公式;来源:Zxxk.Com(2)设数列anbn是首项为1,公比为c的等比数列,求bn的前n项和Sn.解 (1)设等差数列an的公差是d.依题意a3a8(a2a7)2d6,从而d3.由a2a72a17d23,解得a11.所以数列an的通项公式为an3n2.(2)由数列anbn是首项为1,公比为c的等比数列,来源得anbncn1,即3n2bncn1,所以bn3n2cn1.所以Sn147(3n2)(1cc2cn1)(1cc2cn1)从而当c1时,Snn.当c1时,Sn.来源:Z*xx*k.Com12设各项均为正数的等比数列an的前n项和为Sn,S41,S817.(1)求数列an的通项公式;(2)是否存在最小的正整数m,使得nm时,an恒成立?若存在,求出m;若不存在,请说明理由解 (1)设an的公比为q,由S41,S817知q1,所以得1,17.相除得17,解得q416.所以q2或q2(舍去)由q2可得a1,所以an.(2)由an,得2n12 011,而2102 011恒成立13已知公差大于零的等差数列an的前n项和为Sn,且满足a2a465,a1a518.(1)求数列an的通项公式an.(2)若1i21,a1,ai,a21是某等比数列的连续三项,求i的值;(3)是否存在常数k,使得数列为等差数列?若存在,求出常数k;若不存在,请说明理由解(1)因为a1a5a2a418,又a2a465,所以a2,a4是方程x218x650的两个根又公差d0,所以a2a4.所以a25,a413.所以解得a11,d4.所以an4n3.(2)由1i21,a1,ai,a21是某等比数列的连续三项,所以a1a21a,即181(4i3)2,解得i3.(3)由(1)知,Snn142n2n.假设存在常数k,使数列为等差数列,由等差数列通项公式,可设anb,得2n2(k1)nan22abnb恒成立,可得a2,b0,k1.所以存在k1使得为等差数列14设Sn为数列an的前n项和,若(nN*)是非零常数,则称该数列为“和等比数列”(1)若数列2bn是首项为2,公比为4的等比数列,试判断数列bn是否为“和等比数列”;(2)若数列cn是首项为c1,公差为d(d0)的等差数列,且数列cn是“和等比数列”,试探究d与c1之间的关系解(1)因为数列2bn是首项为2,公比为4的等比数列,所以2bn24n122n1,因此,bn2n1,设数列bn前n项和为Tn,则Tnn2,T2n4n2,所以4.因此数列bn是“和等比数列”

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论