2018-2019学年十堰市高一下学期期末数学(理)试题(解析版)_第1页
2018-2019学年十堰市高一下学期期末数学(理)试题(解析版)_第2页
2018-2019学年十堰市高一下学期期末数学(理)试题(解析版)_第3页
2018-2019学年十堰市高一下学期期末数学(理)试题(解析版)_第4页
2018-2019学年十堰市高一下学期期末数学(理)试题(解析版)_第5页
已阅读5页,还剩14页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2018-2019学年湖北省十堰市高一下学期期末数学(理)试题一、单选题1已知数列满足,则( )A4B-4C8D-8【答案】C【解析】根据递推公式,逐步计算,即可求出结果.【详解】因为数列满足,所以,.故选C【点睛】本题主要考查由递推公式求数列中的项,逐步代入即可,属于基础题型.2( )ABCD【答案】A【解析】将根据诱导公式化为后,利用两角和的正弦公式可得.【详解】.故选:A【点睛】本题考查了诱导公式,考查了两角和的正弦公式,属于基础题.3在中,角,所对的边分别为,若,则( )AB2C3D【答案】A【解析】利用正弦定理,可直接求出的值.【详解】在中,由正弦定理得,所以,故选:A.【点睛】本题考查利用正弦定理求边,要记得正弦定理所适用的基本类型,考查计算能力,属于基础题。4已知三个互不相等的负数,满足,设,则( )ABCD【答案】C【解析】作差后利用已知条件变形为,可知为负数,由此可得答案.【详解】由题知.因为,都是负数且互不相等,所以,即.故选:C【点睛】本题考查了作差比较大小,属于基础题.5已知等比数列的前项和为,若,则数列的公比( )ABC或D以上都不对【答案】C【解析】根据和可得,解得结果即可.【详解】由得,所以,所以,所以,解得或故选:C.【点睛】本题考查了等比数列的通项公式的基本量的运算,属于基础题.6如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成的角的大小为()A30B45C60D90【答案】C【解析】连接,由三角形中位线定理及平行四边形性质可得 ,所以是与所成角,由正方体的性质可知是等边三角形,所以,与所成角是,故选C.7在中,内角,的对边分别为,若,且,则的形状为( )A等边三角形B等腰直角三角形C最大角为锐角的等腰三角形D最大角为钝角的等腰三角形【答案】D【解析】先由余弦定理,结合题中条件,求出,再由,求出,进而可得出三角形的形状.【详解】因为,所以,所以.又,所以,则的形状为最大角为钝角的等腰三角形.故选D【点睛】本题主要考查三角形的形状的判定,熟记余弦定理即可,属于常考题型.8某几何体的三视图如图所示(实线部分),若图中小正方形的边长均为1,则该几何体的体积是( ) ABCD【答案】A【解析】由三视图得出原几何体是由半个圆锥与半个圆柱组成的组合体,并且由三视图得出圆柱和圆锥的底面半径,圆锥的高,圆柱的高,再由圆柱和圆锥的体积公式得解.【详解】由三视图可知,几何体是由半个圆锥与半个圆柱组成的组合体,其中圆柱和圆锥的底面半径,圆锥的高,圆柱的高所以圆柱的体积,圆锥的体积,所以组合体的体积故选B【点睛】本题主要考查空间几何体的三视图和空间几何体圆柱和圆锥的体积,属于基础题9定义运算:.若不等式的解集是空集,则实数的取值范围是( )ABCD【答案】B【解析】根据定义可得的解集是空集,即恒成立,再对分类讨论可得结果.【详解】由题意得的解集是空集,即恒成立.当时,不等式即为,不等式恒成立;当时,若不等式恒成立,则即解得.综上可知:.故选:B【点睛】本题考查了二次不等式的恒成立问题,考查了分类讨论思想,属于基础题.10已知,且,则( )ABCD【答案】C【解析】根据同角三角函数的基本关系及两角和差的正弦公式计算可得.【详解】解:因为,因为,所以因为,所以所以故选:【点睛】本题考查同角三角函数的基本关系,两角和差的正弦公式,属于中档题.11为等差数列的前项和,且,记,其中表示不超过的最大整数,如,数列的前项和为( )ABCD【答案】D【解析】利用等差数列的通项公式与求和公式可得,再利用,可得,即可得出【详解】解:为等差数列的前项和,且,可得,则公差,则,数列的前项和为:故选:【点睛】本题考查了等差数列的通项公式与求和公式、对数运算性质、取整函数,考查了推理能力与计算能力,属于中档题12在中,内角,的对边分别为,且,为的面积,则的最大值为( )A1B2CD【答案】C【解析】先由正弦定理,将化为,结合余弦定理,求出,再结合正弦定理与三角形面积公式,可得,化简整理,即可得出结果.【详解】因为,所以可化为,即,可得,所以.又由正弦定理得,所以,当且仅当时,取得最大值.故选C【点睛】本题主要考查解三角形,熟记正弦定理与余弦定理即可,属于常考题型.二、填空题13已知,则的最小值为_.【答案】25【解析】变形后,利用基本不等式可得.【详解】 当且仅当,即, 时取等号.故答案为:25【点睛】本题考查了利用基本不等式求最值,属于基础题.14设等差数列,的前项和分别为,若,则_【答案】【解析】分析:首先根据等差数列的性质得到,利用分数的性质,将项的比值转化为和的比值,从而求得结果.详解:根据题意有,所以答案是.点睛:该题考查的是有关等差数列的性质的问题,将两个等差数列的项的比值可以转化为其和的比值,结论为,从而求得结果.15在中,内角的对边分别为,若的周长为,面积为,则_【答案】3【解析】【详解】分析:由题可知,中已知,面积公式选用,得,又利用余弦定理,即可求出的值.详解:, , 由余弦定理,得又,解得.故答案为3.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向;第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化;第三步:求结果.16如图,在三棱锥中,它的每个面都是全等的正三角形,是棱上的动点,设,分别记与,所成角为,则的取值范围为_【答案】【解析】作交于,连接,可得 是与所成的角根据等腰三角形的性质,作交于,同理可得,根据,的关系即可得解.【详解】解:作交于,连接,因为三棱锥中,它的每个面都是全等的正三角形,为正三角形, 是与所成的角,根据等腰三角形的性质作交于,同理可得,则,得故答案为:【点睛】本题考查异面直线所成的角,属于中档题.三、解答题17已知,(1)求的值;(2)求的值【答案】(1);(2).【解析】(1)利用同角三角函数平方和商数关系求得;利用两角和差正切公式求得结果;(2)利用二倍角公式化简所求式子,分子分母同时除以可将所求式子转化为关于的式子,代入求得结果.【详解】(1), (2)【点睛】本题考查利用同角三角函数、两角和差正切公式、二倍角的正余弦公式化简求值问题,关键是能够利用求解关于正余弦的齐次式的方式,将问题转化为与有关的式子的求解.18在中,角所对的边分别为,且.(1)求;(2)若,求的周长.【答案】(1);(2)【解析】【详解】分析:(1)利用正弦定理,求得,即可求出A,根据已知条件算出,再由大边对大角,即可求出C;(2)易得,根据两角和正弦公式求出,再由正弦定理求出和,即可得到答案.详解:解:(1)由正弦定理得,又,所以,从而,因为,所以.又因为,所以.(2)由(1)得由正弦定理得,可得,.所以的周长为.点睛:本题主要考查正弦定理在解三角形中的应用.正弦定理是解三角形的有力工具,其常见用法有以下四种:(1)已知两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)已知两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.19已知公差不为零的等差数列的前项和为,且成等比数列.(1)求数列的通项公式;(2)若,数列的前项和为,求.【答案】(1);(2)【解析】试题分析:(1)利用等差等比基本公式,计算数列的通项公式;(2)利用裂项相消法求和.试题解析:(1)设公差为,因为,成等数列,所以,即,解得,或(舍去),所以.(2)由(1)知,所以,所以.20在 中,内角 的对边分别为,已知 .(1)证明: ;(2)若 ,求 边上的高.【答案】(1)见解析(2)【解析】分析:(1)由,结合正弦定理可得,即;(2)由,结合余弦定理可得,从而可求得 边上的高.详解:(1)证明:因为,所以 ,所以 ,故.(2)解:因为,所以.又,所以,解得,所以,所以边上的高为.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.21如图,在三棱柱中,平面平面,为棱的中点(1)证明:;(2)求三棱柱的高【答案】(1)证明见解析(2)【解析】(1)连接,作为棱的中点,连结,由平面平面,得到平面,则,再由,即可证明平面,从而得证;(2)根据等体积法求出点面距.【详解】(1)证明:连接,是等边三角形作为棱的中点,连结,平面平面,平面平面,平面,平面平面,平行四边形是菱形又,分别为,的中点,又,平面,平面平面又平面,(2)解:连接,为正三角形为的中点,同理可得又平面平面,且平面平面,平面,平面,又三棱柱的高即点到平面的距离在中,则又,则【点睛】本题考查线面垂直,线线垂直的证明,三棱锥的体积及点到平面的距离的计算,属于中档题.22已知等差数列与等比数列满足,且. (1)求数列,的通项公式;(2)设,是否存在正整数,使恒成立?若存在,求出的值;若不存在,请说明理由.【答案】(1), (2)存在正整数,证明见解析【解析】(1)根据题意,列出关于d与q的两个等式,解方程组,即可求出。(2)利用错位相减求出,再讨论求出的最小值,对应的n值即为所求的k值。【详解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论