文化基因算法ppt.ppt_第1页
文化基因算法ppt.ppt_第2页
文化基因算法ppt.ppt_第3页
文化基因算法ppt.ppt_第4页
文化基因算法ppt.ppt_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

MemeticAlgorithm Member 杨勇佳 易科 朱家骅 苏航 Contents 1Introduction2ThedevelopmentofMAs2 11stgeneration2 22ndgeneration2 33rdgeneration3Applications4Example Introduction Hawkins 1976 raisedmemenotion Introduction InspiredbybothDarwinianprinciplesofnaturalevolutionandDawkins notionofameme theterm MemeticAlgorithm MA wasintroducedbyMoscatoin1989whereheviewedMAasbeingclosetoaformofpopulation basedhybridgeneticalgorithm GA coupledwithanindividuallearningprocedurecapableofperforminglocalrefinements Ingeneral usingtheideasofmemeticswithinacomputationalframeworkiscalled MemeticComputingorMemeticComputation MC MAisamoreconstrainednotionofMC Morespecifically MAcoversoneareaofMC ThedevelopmentofMAs 1stgeneration amarriagebetweenapopulation basedglobalsearch oftenintheformofanevolutionaryalgorithm coupledwithaculturalevolutionarystage ThissuggestswhythetermMAstirredupcriticismsandcontroversiesamongresearcherswhenfirstintroduced Pseudocode ProcedureMemeticAlgorithmInitialize Generateaninitialpopulation whileStoppingconditionsarenotsatisfieddoEvaluateallindividualsinthepopulation Evolveanewpopulationusingstochasticsearchoperators Selectthesubsetofindividuals thatshouldundergotheindividualimprovementprocedure foreachindividualindoPerformindividuallearningusingmeme s withfrequencyorprobabilityofforaperiodof ProceedwithLamarckianorBaldwinianlearning endforendwhile HybridAlgorithms ThedevelopmentofMAs 2ndgeneration exhibitingtheprinciplesofmemetictransmissionandselectionintheirdesign InMulti memeMA thememeticmaterialisencodedaspartofthegenotype MAconsideringmultipleindividuallearningmethodswithinanevolutionarysystem thereaderisreferredto Multi meme Hyper heuristicandMeta LamarckianMA ThedevelopmentofMAs 3ndgeneration Co evolution 8 andself generatingMAs 9 Incontrastto2ndgenerationMAwhichassumesthatthememestobeusedareknownapriori 3rdgenerationMAutilizesarule basedlocalsearchtosupplementcandidatesolutionswithintheevolutionarysystem thuscapturingregularlyrepeatedfeaturesorpatternsintheproblemspace ThebasicmodelofMAs MAMethod Foralltheproblemswewanttofindtheoptimalsolution facingafundamentalquestionhowtogeneration Pseudocode ProcessDo Generation pop individual variablesbreeders newpop Individual beginbreeders Select From Population pop newpop Generate New Population breeders pop Update Population pop newpop end MAMethod ForGenerate New Populationprocess themosttypicalsituationinvolvesutilizingjusttwooperators recombinationandmutation Pseudocode ProcessGenerate New Population pop Individual op Operator Individual variablesbuffer Individual j 1 op beginbuffer 0 pop forj 1 op dobuffer j Apply Operator op j buffer j 1 Endfor Inessence amutationoperatormustgenerateanewsolutionbypartlymodifyinganexistingsolution Thismodificationcanberandom asitistypicallythecase orcanbeendowedwithproblem dependentinformationsoastobiasthesearchtoprobably goodregionsofthesearchspace MAMethod MAMethod Pseudocode ProcessLocal Improver current Individual op Operator variablesnew Individualbeginrepeatnew Apply Operator op current if Fg new Fg current thencurrent new endifuntilLocal Improver Termination Criterion returncurrent end MAMethod Afterhavingpresentedtheinnardsofthegenerationprocess wecannowhaveaccesstothelargerpicture ThefunctioningofaMAconsistsoftheiterationofthisbasicgenerationalstep Pseudocode ProcessMA Individual variablespop Individual beginpop Generate Initial Population repeatpop Do Generation pop ifConverged pop thenpop Restart Population pop endifuntilMA Termination Criterion end MAMethod TheGenerate Initial Populationprocessisresponsibleforcreatingtheinitialsetof pop configurations Pseudocode ProcessGenerate Initial Population N Individual variablespop Individual ind Individual j 1 beginforj 1 doind Generate Random Solution pop j Local Improver ind endforreturnpopend MAMethod Considerthatthepopulationmayreachastateinwhichthegenerationofnewimprovedsolutionbeveryunlikely Pseudocode ProcessRestart Population pop Individual Individual variablesnewpop Individual j preserved 1 pop begin preserved pop PRESERVE forj 1 preserveddonewpop j ithBest pop j endforforj preserved 1 pop donewpop j Generate Random Configuration newpop j Local Improver newpop j endfor returnnewpopend MAs Infact MAsisageneticalgorithmframework isaconcept inthisframework usingdifferentsearchstrategiescanconstitutedifferentMAs suchasglobalsearchstrategycanbeusedgeneticalgorithms evolutionstrategies evolutionaryprogramming etc localsearchstrategycanbeusedtoclimbthesearch simulatedannealing greedyalgorithms tabusearch guidedlocalsearch Applications manyclassicalNPproblemForexamplegraphpartitioning multidimensionalknapsack travellingsalesmanproblem quadraticassignmentproblem setcoverproblem minimalgraphcoloring maxindependentsetproblem binpackingproblem Comparisonwiththegeneticalgorithmconvergesfaster betterresults Example MultidimensionalKnapsackProblemsProblemDescriptionTherearenitems thevalueofeachitemis i 1 2 n existingabackpack thebackpackhasmconstraints eachconstraintmaximumProvidinganamountof j 1 2 m theiitemforthejconstraintsis i 1 2 N j 1 2 m Example Mathematicalmodel 1 max 1 2 1 0 1 i 1 2 n j 1 2 m 0representsthefirstIitemsdonotfitinabackpack 1indicatestheIitemisloadedbackpack Example Inthispaper thedegreeofconstraintviolationbysortingmethodmakesthebestsolutionAmountmaximizevaluecasesatisfiesalltheconstraints Foreachconstraintj alloftheitemsindescendingSortaccordingto and representforconstraintj anumberofthesort Calculatingforeachviolationoftheconstraints i 1 2 nj 1 2 m Example mconstraintascendingsortaccordingtoviolationoftheconstraints Wefirstprocesssmallviolationoftheconstraints ProcessingFollow if 1 L L L 1Else 0 Example InthispaperusingGreedystrategysoFitnessfunctionf 1 Generatingfunction Single pointcrossover SinglepointmutationLocalsearch SimulatedAnnealing Example StepusingsimulatedannealingalgorithmforlocalsearchSTEP1Givenaninitialtemperature Individualastheinitialstateofthesimulatedannealingalgorithm STEP2Generateanewstate theneighborhoodfunctiondefinedasInotherstatesofthetwoitemstochoose STEP3calculatethenumberofoldandnewstateenergy theenergyfunctio

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论