


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、设F1,F2分别是双曲线的左、右焦点。若双曲线上存在点A,使F1AF2=90,且|AF1|=3|AF2|,则双曲线离心率为( )(A) (B)(C) (D) 2.已知抛物线y22px(p0)的准线与圆(x3)2y216相切,则p的值为(A)(B)1(C)2(D)43设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐近线垂直,那么此双曲线的离心率为(A) (B) (C) (D)4设抛物线的焦点为,准线为,为抛物线上一点,为垂足,如果直线斜率为,那么(A) (B) 8 (C) (D) 165已知椭圆C:(ab0)的离心率为,过右焦点F且斜率为k(k0)的直线于C相交于A、B两点,若。则k =(A)1 (B) (C) (D)26设O为坐标原点,,是双曲线(a0,b0)的焦点,若在双曲线上存在点P,满足P=60,OP=,则该双曲线的渐近线方程为(A)xy=0 (B)xy=0 (C)x=0 (D)y=07已知抛物线,过其焦点且斜率为1的直线交抛物线与、两点,若线段的中点的纵坐标为2,则该抛物线的准线方程为 (A) (B) (C) (D)8若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为A2 B3 C6 D89椭圆的右焦点,其右准线与轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点,则椭圆离心率的取值范围是(A) (B) (C) (D)10题图10、如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为( ) (A)(B)(C)(D)11若点O和点分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为 ( )A B C D12 椭圆上的点到直线的最大距离是 ( ) A 3 B C D13 过抛物线的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于5,则这样的直线( )A 有且仅有一条 B 有且仅有两条 C有无穷多条 D不存在14 设双曲线 (0a0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别为p、q,则等于 ( ) A2a B C D17 已知双曲线的焦点为F1、F2,点M在双曲线上且MF1x轴,则F1到直线F2M的距离为( ) A B C D18 已知F1、F2是椭圆+y2=1的两个焦点, P是该椭圆上的一个动点, 则|PF1|PF2|的最大值是 .19 如图,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于M(x1,y1),N(x2, y2)两点求证:OMON(17) 已知中心在原点的双曲线C的右焦点为(2,0),右顶点为 (1)求双曲线C的方程; (2)若直线与双曲线C恒有两个不同的交点A和B,且(其中O为原点). 求k的取值范围.(16) 已知椭圆C:1(ab0)的左右焦点为F1、F2,离心率为e. 直线l:yexa与x轴y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设.()证明:1e2;()若,MF1F2的周长为6;写出椭圆C的方程.(18) 如图,已知椭圆的中心在坐标原点,焦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民爆安全学习培训心得
- 民法法典课件
- 创意英语考试题目及答案
- 测试软件考试题库及答案
- 民法主观题讲义课件
- 民族风情速写课件
- 东莞的新质生产力
- 民族的烙印课件
- 重庆安全协会服务讲解
- 新质生产力的核心标志解读
- 2025中国人民抗日战争暨世界反法西斯战争胜利80周年阅兵观后感心得体会3篇
- 眼睛保健操教学课件
- “时空对话”朗诵剧剧本
- 成人脑室外引流护理标准解读
- 数字经济时代的法律挑战
- 算法认识与体验(教学设计)-2024-2025学年人教版(2024)小学信息技术五年级全一册
- 2025年辅警笔试考试题库题库与答案
- 2025危险品押运员模拟考试试题及答案
- 中小学校园膳食监督家长委员会工作制度
- 2025年银发族市场洞察报告
- 义务教育阶段中小学学生转学申请表
评论
0/150
提交评论