三角函数公式推导及应用.doc_第1页
三角函数公式推导及应用.doc_第2页
三角函数公式推导及应用.doc_第3页
三角函数公式推导及应用.doc_第4页
三角函数公式推导及应用.doc_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

三角函数公式推导及应用两角和的正弦与余弦公式:(1)sin(+)=sincos+cossin;(2)cos(+)=coscos-sinsin;教材的思路是在直角坐标系的单位圆中,根据两点间的距离公式推导:cos(+)=coscos-sinsin;再用诱导公式证明:sin(+)=sincos+cossin;如图所示:AOD=,BOD=-,AOC=,DOC=+。则B(cos,-sin);D(1,0);A(cos,sin);Ccos(+),sin(+)。OA=OB=OC=OD=1CD=AB。CD2=cos(+)-12+sin(+)-02;=cos2(+)-2cos(+)+1+sin2(+);=2-2cos(+)。AB2=(cos-cos)2+(sin+sin)2;=cos2-2coscos+cos2+sin2+2sinsin+sin2;=2-2coscos-sinsin。2-2cos(+)=2-2coscos-sinsin。cos(+)=coscos-sinsinsin(+)=cos(90-)=cos(90-)+(-)=cos(90-)cos(-)-sin(90-)sin(-)=sincos+cossin又tan(-) = sin(-)/cos(-) = (sincos-cossin)/(coscos+sinsin)同除coscos,得tan(-)=(tan-tan)/(1+tantan)同理,tan(+)=(tan+tan)/(1-tantan)正弦、余弦的和差化积公式指三角函数中的一组恒等式以上公式可用积化和差公式推导,也可以由和角公式得到,以下用和角公式证明之。证明:由和角公式有,两式相加、减便可得到上面的公式(1)、(2),同理可证明公式(3)、(4)。正切的和差化积(附证明)cotcot=sin()/(sinsin)tan+cot=cos(-)/(cossin)tan-cot=-cos(+)/(cossin)【注意右式前的负号】证明:左边=tantan=sin/cossin/cos=(sincoscossin)/(coscos)=sin()/(coscos)=右边等式成立2注意事项编辑在应用和差化积时,必须是一次同名三角函数方可实行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次口诀正加正,正在前,余加余,余并肩正减正,余在前,余减余,负正弦反之亦然生动的口诀:(和差化积)帅+帅=帅哥1帅-帅=哥帅哥+哥=哥哥哥-哥=负嫂嫂反之亦然语文老师教的口诀:口口之和仍口口 cos+cos=2cos(+)/2cos(-)/2赛赛之和赛口留 sin+sin=2sin(+)/2cos(-)/2口口之差负赛赛 cos-cos=-2sin(+)/2sin(-)/2赛赛之差口赛收 sin-sin=2cos(+)/2sin(-)/2另一口诀:正和正在先,sin+sin=2sin(+)/2cos(-)/2正差正后迁,sin-sin=2cos(+)/2sin(-)/2余和一色余,cos+cos=2cos(+)/2cos(-)/2余差翻了天,cos-cos=-2sin(+)/2sin(-)/2另另一种口诀(前提是角度(+)/2在前,(-)/2在后的标准形式) :正弦加正弦,正弦在前面,sin+sin=2sin(+)/2cos(-)/2正弦减正弦,余弦在前面,sin-sin=2cos(+)/2sin(-)/2余弦加余弦,余弦全部见,cos+cos=2cos(+)/2cos(-)/2余弦减余弦,余弦(负)不想见,cos-cos=-2sin(+)/2sin(-)/23记忆方法编辑和差化积公式的形式比较复杂,记忆中以下几个方面是难点,下面指出了各自的简单记忆方法。如何只记两个公式甚至一个我们可以只记上面四个公式的第一个和第三个。而第二个公式中的-sin=sin(+),也就是sin-sin=sin+sin(+),这就可以用第一个公式解决。同理第四个公式中,cos-cos=cos+cos(+),这就可以用第三个公式解决。如果对诱导公式足够熟悉,可以在运算时把cos全部转化为sin,那样就只记住第一个公式就行了。用的时候想得起一两个就行了。结果乘以2这一点最简单的记忆方法是通过三角函数的值域判断。sin和cos的值域都是-1,1,其积的值域也应该是-1,1,而和差的值域却是-2,2,因此乘以2是必须的。也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2,如:cos(-)-cos(+)=(coscos+sinsin)-(coscos-sinsin)=2sinsin故最后需要乘以2。只有同名三角函数能和差化积无论是正弦函数还是余弦函数,都只有同名三角函数的和差能够化为乘积。这一点主要是根据证明记忆,因为如果不是同名三角函数,两角和差公式展开后乘积项的形式都不同,就不会出现相抵消和相同的项,也就无法化简下去了。乘积项中的角要除以2在和差化积公式的证明中,必须先把和表示成两角和差的形式,才能够展开。熟知要使两个角的和、差分别等于和,这两个角应该是(+)/2和(-)/2,也就是乘积项中角的形式。注意和差化积和积化和差的公式中都有一个“除以2”,但位置不同;而只有和差化积公式中有“乘以2”。使用哪两种三角函数的积这一点较好的记忆方法是拆分成两点,一是是否同名乘积,二是“半差角”(-)/2的三角函数名。是否同名乘积,仍然要根据证明记忆。注意两角和差公式中,余弦的展开中含有两对同名三角函数的乘积,正弦的展开则是两对异名三角函数的乘积。所以,余弦的和差化作同名三角函数的乘积;正弦的和差化作异名三角函数的乘积。(-)/2的三角函数名规律为:和化为积时,以cos(-)/2的形式出现;反之,以sin(-)/2的形式出现。由函数的奇偶性记忆这一点是最便捷的。如果要使和化为积,那么和调换位置对结果没有影响,也就是若把(-)/2替换为(-)/2,结果应当是一样的,从而(-)/2的形式是cos(-)/2;另一种情况可以类似说明。余弦-余弦差公式中的顺序相反/负号这是一个特殊情况,完全可以死记下来。当然,也有其他方法可以帮助这种情况的判定,如(0,内余弦函数的单调性。因为这个区间内余弦函数是单调减的,所以当大于时,cos小于cos。但是这时对应的(+)/2和(-)/2在(0,)的范围内,其正弦的乘积应大于0,所以要么反过来把cos放到cos前面,要么就在式子的最前面加上负号。积化和差积化和差恒等式可以通过展开角的和差恒等式的手段来证明。即只需要把等式右边用两角和差公式拆开就能证明:sinsin=-1/2-2sinsin=-1/2(coscos-sinsin)-(coscos+sinsin)=-1/2cos(+)-cos(-)其他的3个式子也是相同的证明方法。三角函数1. 与(0360)终边相同的角的集合(角与角的终边重合):终边在x轴上的角的集合: 终边在y轴上的角的集合:终边在坐标轴上的角的集合: 终边在y=x轴上的角的集合: 终边在轴上的角的集合:若角与角的终边关于x轴对称,则角与角的关系:若角与角的终边关于y轴对称,则角与角的关系:若角与角的终边在一条直线上,则角与角的关系:角与角的终边互相垂直,则角与角的关系:2. 角度与弧度的互换关系:360=2 180= 1=0.01745 1=57.30=5718注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad57.30=5718 10.01745(rad)3、弧长公式:. 扇形面积公式:4、三角函数:设是一个任意角,在的终边上任取(异于原点的)一点P(x,y)P与原点的距离为r,则 ; ; ; ; ;. .5、三角函数在各象限的符号:(一全二正弦,三切四余弦)6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT.7. 三角函数的定义域:三角函数 定义域sinxcosxtanxcotxsecxcscx8、同角三角函数的基本关系式: 9、诱导公式:“奇变偶不变,符号看象限”三角函数的公式:(一)基本关系 公式组二 公式组三 公式组四 公式组五 公式组六 (二)角与角之间的互换公式组一 公式组二 公式组三 公式组四 公式组五 , ,. 10. 正弦、余弦、正切、余切函数的图象的性质:(A、0)定义域RRR值域RR周期性 奇偶性奇函数偶函数奇函数奇函数当非奇非偶当奇函数单调性上为增函数;上为减函数();上为增函数上为减函数()上为增函数()上为减函数()上为增函数;上为减函数()注意:与的单调性正好相反;与的单调性也同样相反.一般地,若在上递增(减),则在上递减(增).与的周期是.或()的周期.的周期为2(,如图,翻折无效). 的对称轴方程是(),对称中心();的对称轴方程是(),对称中心();的对称中心().当;.与是同一函数,而是偶函数,则.函数在上为增函数.() 只能在某个单调区间单调递增. 若在整个定义域,为增函数,同样也是错误的.定义域关于原点对称是具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:,奇函数:)奇偶性的单调性:奇同偶反. 例如:是奇函数,是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若的定义域,则一定有.(的定义域,则无此性质)不是周期函数;为周期函数();是周期函数(如图);为周期函数();的周期为(如图),并非所有周期函数都有最小正周期,例如: . 有.三角函数的图象变换有振幅变换、周期变换和相位变换等函数yAsin(x)的振幅|A|,周期,频率,相位初相(即当x0时的相位)(当A0,0 时以上公式可去绝对值符号),由ysinx的图象上的点的横坐标保持不变,纵坐标伸长(当|A|1)或缩短(当0|A|1)到原来的|A|倍,得到yAsinx的图象,叫做振幅变换或叫沿y轴的伸缩变换(用y/A替换y)由ysinx的图象上的点的纵坐标保持不变,横坐标伸长(0|1)或缩短(|1)到原来的倍,得到ysin x的图象,叫做周期变换或叫做沿x轴的伸缩变换(用x替换x)由y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论