北师大版必修1 对数函数的概念 对数函数y=log2x的图像和性质 作业.docx_第1页
北师大版必修1 对数函数的概念 对数函数y=log2x的图像和性质 作业.docx_第2页
北师大版必修1 对数函数的概念 对数函数y=log2x的图像和性质 作业.docx_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

5 对数函数5.1对数函数的概念5.2对数函数y=log2x的图像和性质课后训练案巩固提升1.下列各组函数中,表示同一函数的是()a.y=x2和y=(x)2b.|y|=|x|和y3=x3c.y=logax2和y=2logaxd.y=x和y=logaax解析:对于a,定义域不同;对于b,对应法则不同;对于c,定义域不同;对于d,y=logaaxy=x.答案:d2.导学号91000130若函数f(x)=ax(a0,且a1)的反函数是g(x),且g14=-1,则f-12=()a.2b.2c.12d.22解析:由已知得g(x)=logax.又g14=loga14=-1,于是a=4,因此f(x)=4x,故f-12=4-12=12.答案:c3.函数f(x)=log2x,且f(m)0,则m的取值范围是()a.(0,+)b.(0,1)c.(1,+)d.r解析:结合f(x)=log2x的图像(图略)可知,当f(m)0时,m1.答案:c4.设f(x)是奇函数,当x0时,f(x)=log2x,则当x0时,f(x)=()a.-log2xb.log2(-x)c.logx2d.-log2(-x)解析:设x0,则f(-x)=log2(-x).f(x)是奇函数,f(-x)=-f(x).当x0时,f(x)=-log2(-x).答案:d5.已知函数y=log2x,其反函数y=g(x),则g(x-1)的图像是()解析:由题意知g(x)=2x,所以g(x-1)=2x-1,故选c.答案:c6.设a,b,c均为正数,且2a=log12a,12b=log12b,12c=log2c,则()a.abcb.cbac.cabd.bac解析:由函数y=2x,y=12x,y=log2x,y=log12x的图像可得出ab0,a1).由条件得loga34=-23,即loga223=-23,则a=12.因此f(x)=log12x.所以f(2)=log122=log1212-12=-12.答案:-128.函数f(x)=log2x在区间a,2a(a0)上的最大值与最小值之差为.解析:f(x)=log2x在区间a,2a上是增加的,f(x)max-f(x)min=f(2a)-f(a)=log22a-log2a=1.答案:19.导学号91000131已知函数f(x)=log2x,x0,3x,x0,直线y=a与函数f(x)的图像恒有两个不同的交点,则a的取值范围是.解析:如图所示,需使函数f(x)的图像与直线y=a恒有两个不同的交点,则a(0,1.答案:(0,110.已知函数f(x)=|log2x|.(1)若f(m)=3,求m的值;(2)若ab,且f(a)=f(b),求ab的值.解:(1)由f(m)=3,得|log2m|=3,即log2m=3或log2m=-3,解得m=8或m=18.(2)ab,且f(a)=f(b),不妨设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论