资料来源.txt

0073、无线视频监控系统设计毕业论文资料

收藏

资源目录
跳过导航链接。
压缩包内文档预览:
预览图
编号:550679    类型:共享资源    大小:1.57MB    格式:RAR    上传时间:2015-12-06 上传人:QQ28****1120 IP属地:辽宁
6
积分
关 键 词:
毕业设计论文
资源描述:
0073、无线视频监控系统设计毕业论文资料,毕业设计论文
内容简介:
天津工程师范学院 毕业设计中期报告 系别 电子系 班级 应教 0201 学生 姓名 杨丽 指导 教师 李杰 课题名称: 无线视频监控系统设计 简述开题以来所做的具体工作、取得的进展及下一步主要工作: 2006-2007 学年 ( 1)第一学期 通过收集整理资料,认真阅读资料,对无线视频监控系统设计有个整体的了解。然后设计方案,对所设计的方案进行分析论证,选择较可取的方案。方案选择完毕后,针对该方案了解电路的原理,分析整个系统的流程,构造出大体框架。然后再分析每个模块电路的实现功能,以及可能存在的问题。 根据方案 选择出元器件后,查找各器件的应用及其在电路中的用法,根据公式计算所用到器件的型号及大小,列元件清单,购买器件。 ( 2)第二学期 第一阶段:根据上学期整理的资料,构思整个系统的信号流程和布局工作。 运用相关软件 Protel DXP 设计出电路原理图,原理图库和印刷电路板以及封装元件库,仿真调试。再 开始焊接电路,逐渐对各个焊接完的模块进行测试和编程,对单片机 控制系统 及其原理进行了详细分析,不断修改程序以达到预期要实现的功能。 第二阶段:完成所有模块的编程及调试任务,接着统调,在统调的过程中注意电源的极性以及各模块间的信号是否接好、是否共地、芯片是否安装正确等问题。 ( 3)取得的进展 各模块电路已基本实现,获得的指标与预期的差距不大。 ( 4)下一步的主要工作 尽力解决统调过程中出现的问题,分析产生各种现象的原因。 记下调试过程中各个指标。 整理资料,准备着手写论文。 回想设计的整个过程,准备答辩。 学生签字: 年 月 日 nts指导教师的建议与要求: 指导教师签字: 年 月 日 注:本表格同毕业设计一同装订成册,由所在单位归档保存。 nts天津工程师范学院 毕业设计任务书 题 目 (包括副标题 ) 无线视频监控系统设计 教师姓名 李杰 职 称 副教授 系 别 电子系 学生姓名 杨丽 学 号 09930020119 班 级 应用电子技术教 育 0201 成果形式 A 论文 B 设计说明书 C 实物 D 软件 E 作品 任务下达时间 2006 年 10 月15 1毕业设计(论文)课题任务的内容和要求: (包括原始数据、技术要求、工作要求以及图纸、程序、实物等要求) ( 1) 毕业设计应完 成的主要任务: 摄像头将所采集到的图像信号经过内部的转换电路转换成视频信号送入到 调制 电路中, 调制 电路负责把摄像头输出的视频信号和 56MHz 的本振信号混出射频信号经过放大发送出去。通过键盘控制单片机,经过处理,送给数字无线发射模块进行调制发送。AT89S52 单片机通过键盘在液晶上显示对应的控制信息。 无线射频接收是通过电视机内部电路将射频信号转换成图像信息进行显示。 nRF905无线接收模块把接收到的信号进行解调,把解调后的数据信息传给 C8051F310 单片机,单片机通过指令控制摄像头电机的转向。 ( 2)毕业 设计的主要技术指标: 传输距离 10m 以内 数据传输速度 100KB/S 工作频率 433MHz 频道 工作电压 3.3V、 5V 和 12V 发射模块的发射功率 10-30mW ( 3)工艺制作任务 : 利用万能板完成每个模块电路的焊接、调试,将摄像头采集的模拟信号通过各模块处理,从而在显示器上显示。 ( 4)毕业设计基本要求: 主要是典型电子器件应用(包含 PCB 制造、元器件焊接、电路装配等)方法及工艺;按照电子产品的制造标准及质量认证、调试和检测程序;高频电子技术在电路设计中的应用;以单片机来进行控制。从而做到综合运用单片机原理及应用,接口技术, C 语言nts或汇编语言程序设计原理从系统的角度,做到发射到接收软件设计原理及应用。 ( 5)应收集的文献资料 1 李广弟,朱月秀,王秀山 .单片机基础 M,第二版 ,北京 :北京航空航天大学出版社 ,2001.7 2 徐维祥 ,刘旭敏 .单片微型机原理及应用 M,第一版 ,辽宁 :大连理工大学出版社 ,2002.7 3 李朝青 .单片机学习指导 M,第二版 ,北京 :北京航空航天大学出版社 , 2005.10 4 楼然苗 ,李光飞 .51 系列单片机设 计实例 M,第二版 ,北京 :北京航空航天大学出版社 ,2006.2 5 李军 .51 系列单片机高级实例开发指南 M,第二版 ,北京 :北京航空航天大学出版社 ,2004.6 6 吴金戌 ,沈庆阳 ,郭庭吉 .8051 单片机实践与应用 M,第一版 ,北京 :清华大学出版社 ,2005.8 7 市川裕一 ,青木胜 .高频电路设计与制作 M,第一版 ,北京 :科学出版社 ,2006.8 8 赵亮 ,侯国锐 .单片 机 C 语言编程与实例 M,第一版 ,北京 :人民邮电出版社 ,2003.9 9 马忠梅 ,籍顺心 ,张凯 ,马岩 .单 片 机的 C 语言应用程序设计 M,第一版 ,北京 :北京航空航天大学出版社 ,2003.11 2毕业设计(论文)工作进度计划: 周 次 工作内容 早期进入阶段: 第 12 周: 第 34 周: 第 56 周: 第 79 周: 第 1012 周: 查找资料、确立方案、设计电路 方案论证、购买元件 制作电路、程序设计 系统制作、分块调试 系统调试、反复验证、得出结论 总结论文、准备答辩 教研室(学科组)主任签字: nts 数字无线发射电路 P3.28P3.39P3.0/C2D6P3.17P0.11P0.02GND3VDD4RST/C2CK5P3.410P2.711P2.612P2.513P2.414P2.315P2.216P2.117P2.018P1.719P1.620P1.521P1.422P1.323P1.224P1.125P1.026P0.727P0.628P0.529P0.430P0.331P0.232C8051F310/2/4U5 C8051F310/2/4C1515pFC1615pFC290.1uFC260.1uFS1Y124M3.3V3.3V12345678910JP33.3V3.3V12345JP2+5V3.3V123JP4123JP5+5VEA/VP31X119X218RESET9RD17WR16INT012INT113T014T115P101P112P123P134P145P156P167P178P0039P0138P0237P0336P0435P0534P0633P0732P2021P2122P2223P2324P2425P2526P2627P2728PSEN29ALE/P30TXD11RXD10U3 8051+5v+5vY3 12MC3320pFC32 20pFS6C251uFC30100uFC3110uF+5VVinVoutGNDAM1117-1RP210KVSS1VDD2VO3RS4R/W5E6DB07DB18DB29DB310DB411DB512DB613DB714CS115CS216RST17VEE18LEDK19LEDA20U4 hy12864+5VA0 A1 A2 A3 A4 A5 A6 A7A0A1A2A3A4A5A6A7S3S4S2D71n4148D81n4148D91n4148D61n4148D41n4148D51n4148+5vTRX_CE1PWR_UP2uPCLK3VDD4VSS5CD6AM7DR8VSS9MISO10MOSI11SCK12CSN13XC114XC215VSS16VDD17VSS18VDD_PA19ANT120ANT221VSS22IREF23VSS24VDD25VSS26VSS27VSS28VSS29VSS30DVDD31TXEN32U2NRF905R1022KC1433pFC1310nFC1233pFC1915pFC1815pFC2018pFC2318pFC2120pF17 18pFC226.5pFC24180pFC114.7uF3.3V3.3V3.3VY2 16ML512nHL4 12nHL3 12nH发射天线C27100uFC280.1uFR111KR121KR131KR141KR151KR16330R1751R1851R1951R20510R21510R22510R231MR2410k1 2LED1E2ntsP3.28P 3 .39P3.0/C2D6P3.17P0.11P0.02GND3VDD4RST/C2CK5P 3 .410P 2 .711P 2 .612P 2 .513P 2 .414P 2 .315P 2 .216P2.117P2.018P1.719P1.620P1.521P1.422P1.323P1.224P 1 .125P 1 .026P 0 .727P 0 .628P 0 .529P 0 .430P 0 .331P 0 .232C8051F310/2/4U7C 8 0 5 1 F 3 1 0 / 2 / 4C 3 81 5 p F C 3 9 1 5 p FC 5 10 .1 u FS7Y52 4 MV D D1 23 45 67 89 10J P 6H E A D E R 5 X 2V D DV D DC 5 01 u FTRX_CE1PWR_UP2uPCLK3VDD4VSS5CD6AM7DR8V S S9M I S O10M O S I11S C K12C S N13X C 114X C 215V S S16VDD17VSS18VDD_PA19ANT120ANT221VSS22IREF23VSS24V D D25V S S26V S S27V S S28V S S29V S S30D V D D31T X E N32U6 N R F 9 0 5R 2 52 2 KR 2 61MC 3 63 3 p FC 3 71 0 n FC 3 53 3 p FC 4 21 5 p FC 4 11 5 p FC 4 31 8 p FC 4 71 8 p FC 4 52 0 p FC 4 01 8 p FC 4 46 .5 p FC 4 61 8 0 p FC 3 44 .7 u FV D DV D DV D DY41 6 ML61 2 n HL71 2 n HL81 2 n H接收天线C 4 90 .1 u F+ 5 VV D DD 3 4L E D 1 6C 4 81 0 0 u FV i n V o u tG N DA M 1 1 1 7 - 2C 5 21 0 0 u FC 5 30 .1 u FQ 1 08 0 5 0Q 1 18 0 5 0R 2 75 .1 KR 3 05 .1 KQ3T I P 4 1Q4T I P 4 1Q5T I P 4 2Q6T I P 4 2R 2 84 7 0R 2 94 7 0电机+ 5 VR 3 52KR 3 62KR 3 35 6 0R 3 45 6 0Q78 0 5 0Q88 0 5 012绿 *12L E D 212L E D 1 3. . . . . . .+ 5 V12白 *12L E D 1 412L E D 1 5. . . . . . .+ 5 VE3R 3 11KR 3 21KR 3 71KR 3 81KR 3 91KR 4 01K数字 无线接收电路 ntsR83 . 3KR64 70C94 pFC 107 pFC87 pFC74 pFQ29 01 8R94 . 7KL2R14 70R55 . 6KR7 2 . 2KC61 02 pFC51 02 pFC31 5p FC41 0uD1D212J P 1R21 0012345T1+ 6V132 4U1U P C 16 51Q1C 19 70C21 5p FL11 0m H+ 12 VR322R41 0KR P 15 0KC11 5p F发射给E1电视天线射频发射电路 nts 毕 业 设 计 开 题 报 告 无线视频监控系统 设计 系 别: 电子工程系 班 级: 应用电子技术教育 0201 班 学生姓名: 杨丽 指导教师: 李杰 2006 年 11月 9 日 nts 开题报告填写要求 1开题报告作为毕业设计答辩委员会对学生答辩资格审查的依 据材料之一,应在指导教师指导下,由学生在毕业设计工作前期完成,经指导教师签署意见、专家组及系主任审查后生效; 2开题报告必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴; 3毕业设计的开题报告应包括以下内容: ( 1)主要技术指标; ( 2)工作思路; ( 3)课题的准备情况及进度计划; ( 4)参考文献。 4开题报告的撰写应符合科技文献规范,且不少于 2000 字;参考文献应不少于 15 篇,包括中外文科技期刊、教科书、专著等。 5开题报告正文字体 采用宋体小四号, 1.5 倍行距。附页为 A4 纸型,左边距 3cm,右边距 2cm,上下边距为 2.5cm,字体采用宋体小四号, 1.5 倍行距。 6“课题性质” 一栏: 理工类: A.理论研究 B.应用研究 C 工程设计 D.软件开发 E.其它 经管文教类: A.理论研究 B.应用研究 C.实证研究 D.艺术创作 E.其它 “课题来源”一栏: A.科研立项 B.社会生产实践 C.教师自拟 D.学生自选 “成果形式”一栏: A.论文 B.设计说明书 C.实物 D.软件 E.作品 nts 毕业设计开题报告 课题题目 无线视 频监控系统设计 课题性质 A B C D E 课题来源 A B C D 成果形式 A B C D E 同组同学 无 开题报告内容(可另附页) 指导教师意见(课题难度是否适中、工作量是否饱满、进度安排是否合理、工作条件是否具备等) 指导教师签名: 月 日 专家组及系里意见(选题是否适宜、各项内容是否达到毕业设计(论文)大纲要求、整改意见等) 专家组成员签字: 教学主任(签章): 月 日 nts 附件二 : 开题报告 无线视频监控系统设计 一、选题背景及现实意义 近年来,我国整体经济实力显著增强,但社会治安状况也日趋复杂, 公共安全问题不断凸现。城市犯罪日益突出,手段不断更新、升级。这些就迫切要求加快发展以主动预防为主的视频监控系统 。自“ 911”、“非典”之后,突发事件的应急防范系统成为新的安防建设热点,各主要城市如北京、杭州、广州、深圳开始加快建设城市的视频监控系统。因此,无线视频监控系统技术得到了广泛的应用。 二、主要任务 1.确定设计方案,包括硬件逻辑器件的选择和编程语言的设计。 2.利用所学习过的单片机原理及应用和高频电路原理进行硬件方面的设计实验。 3.以硬件为基础, 使用 Protel DXP 软件 画 电路原理图 。 按原理图制作电路,再 进行编程设计,并结合实验反复 分块 调试验证。 4.系统调试,以确定该方案的实用性和合理性,进行调试验证。 记录在调试中的相关参数, 将 设计作品 运用于实践当中去。 5.总结论文,准备答辩。从中总体完成任务。 三、 研究的 思路 与关键技术 基于无线视频监控系统发展迅速更新、升级及应用广泛等这些特点,本毕业设计主要对模拟信号数字化控制,使其推向数字化的应用领域来进行研究。运用 C8051F310 单片机控制进行数据信息无线传送,通过高频调制电路对射频图像信息进行无线传送。 此方案采用射频无线发射、射频无线接 收、数字无线发射、数字无线接收四部分组成。 C8051F310单片机从键盘取得的数据信号经过处理后送给无线发射模块进行调制发送。键盘经过 C8051F310 单片机可以对无线发射模块 nRF905 进行控制。 AT89S52 单片机通过键盘在液晶上显示对应的控制信息。视频显示设备将接收到的射频信号解调成视频信号并显示,从而达到了监控的功能。如框图 1 nts 框图 1 摄像头采集图像信号,通过内部转换电路转换成视频信号输出到 调制 电路。 调制 电路的设计:电容三点式振荡电路产生 56MHz 正弦信号和 AV 信号 调制 ,得出射频信号,送入到射频放大器 UPC1651 放大后发 送出去 。 nRF905 无线接收模块把接收到的信号进行解调,把解调后的数据信息传给 C8051F310 单片机,单片机通过指令控制摄像头电机的转向。 如框图 2。 框图 2 此设计电路简单,容易实现,使用范围广,对于银行、煤矿等安全地带可以很方便控制摄像头的电机进行检测。 功耗低、软件编程较简单, nRF905 芯片的体积小、 整个系统 成本低 。 用单片机来实现无线视频监控系统,充分利用了单片机的 资源。 同时使用C8051F310 单片机和 nRF905 芯片 一起控制 ,非常 符合我们的设计思路 。 四、性能指标 射频 无线 发射、射频 无线 接收、 数字无线发射 、 数字无线接收 1、 传输距离 10m 以内 2、 数字 传输速度 100KB/S 以内 3、 工作频率 433MHz 频道 4、 工作电压 3.3V、 5V 和 12V 5、 发射模块的发射功率 10-30mW AT89S52 单片机 射频无线接收 液晶显示 C8051F310 单片机 键盘 视频显示 数字无线发射 调制 数字无线接收 C8051F310 单片机 摄像头 高频放大 箭头显示 电机转向 本振 nts 预期达到对移动的图像摄像头可以实时的监视。单片机把按键处理成数字信号送给发送端,在接收端通过将发送的数字调制信号解调后送给接收端的单片机,单片机通过运算后输出相应的指令控制现场的电机作相应的动作,从而达到对 现场的实时监视和控制。 五、进度安排 六、参考文献 1 李广弟,朱月秀,王秀山 .单片机基础 M,第二版 ,北京 :北京航空航天大学出版社 , 2001.7 2 徐维祥 ,刘旭敏 .单片微型机原理及应用 M,第一版 ,辽宁 :大连理工大学出版社 ,2002.7 3 李朝青 .单片机学习指导 M,第二版 ,北京 :北京航空航天大学出版社 , 2005.10 4 楼然苗 ,李光飞 .51 系列单片机设计实例 M,第二版 ,北京 :北京航空航天大学出版社 ,2006.2 5 李军 .51 系列单片机高级实例开发指南 M,第二版 ,北京 :北京航空航天大学出版社 ,2004.6 6 吴金戌 ,沈庆阳 ,郭庭吉 .8051 单片机实践与应用 M,第一版 ,北京 :清华大学出版社 ,2005.8 7 市川裕一 ,青木胜 .高频电路设计与 制作 M,第一版 ,北京 :科学出版社 ,2006.8 8 赵亮 ,侯国锐 .单片 机 C 语言编程与实例 M,第一版 ,北京 :人民邮电出版社 ,2003.9 9 马忠梅 , 籍顺心 , 张凯 等 .单 片机的 C 语言应用程序设计 M,第一版 ,北京 :北京航空航天大学出版社 ,2003.11 10 吴运昌 .模拟集成电路原理与应用 M,第 一 版 ,广东 :华南理工大学出版社 ,2001 11 高吉祥 ,黄智伟 ,陈和 .高频电子线路 M,第 一 版 ,北京 ,电子工业出版社 ,2003 序号 毕业设计阶段性工作及成果 时间安排(初步) 1、 2、 3、 4、 5、 6、 查找资料、确立方案、设计电路 方案论证、购买元件 制作电路、程序设计 系统制作、分块调试 系统调试、反复验证、得出结论 总结论文、准备答辩 早 期进入阶段 第 12 周 第 34 周 第 56 周 第 79 周 第 1012 周 nts 12 梅丽风 ,王艳秋 ,张军 .单片机原理及接口技 术 M,第一版 ,北京 :清华大学出版社, 2004 13 徐守堂 ,杨志民 ,徐大诚 .电视接收技术 M,第一版 ,陕西 :西安电子科技大学出版社, 2003 14 全国大学生电子设计竞赛组委会 .第五届全国大学生电子设计竞赛获奖作品选编 M, 第 一 版 ,北京 :北京理工大学出版社 ,2003 15 张维振 .无线电设备装接调试与检测维修实用手册 M,北京 :银声音像出版社 ,2004.5.1 16 李泊成 .基于 MCS 51 单片机的嵌入式系统设计 M,第一版 ,北京 ,电子工业出版社 ,2004.8.5 17 李泊成 .基于 MCS 51 单片机的嵌入式系统设计 M,第一版 ,北京 :电子工业出版社 ,2004.8.5 18 鲍可进 .C8051F 单片机原理及应用 M,第一版 ,北京 :中国电力出版社 ,2006.1 19无线电编辑部 .无线电元器件精汇 M,第一版 ,北京 :中国邮电出版社 ,2000.4 20 张迎新 ,雷文 ,姚静波 .C8051F 系列 SOC 单片机原理及应用 M,第一版 ,北京 :国防工业出版社 ,2005.8 21童长飞 .C8051F系列单片机开发与 C语言编程 M,第一版 ,北京 :北京航空航天出版 社 ,2005.1 nts答辩提纲 无线视频监控系统设计 应电 0201 班 杨丽 一、 设计要求: 要求设计无线视频监控系统电路 。通过 摄 像头采集图像信号,转化为 AV 信号,通过调制电路发射出去,在电视机上进行显示。另加数字无线发射和数字无线接收电路,数字无线发射电路通过键盘数据进行调制,发射出去;在数字无线接收端,通过单片机将接收的数据处理,完成对 摄 像 头 的转向控制,达到摄像头周围实时监控。 至于数字无线发射部分的AT89S51 单片机主要对液晶显示控制,使液晶屏上显示固定的一些字符和 摄像头的转向。 二、系统组成: 三 、 电路组成 及原理 : 组成 : 电源、射频调制发射电路、 射频接收、 数字无线调制发射、数字无线解调接收 原理 : 本设计主要完成的任务是将摄像头将所采集到的图像信号经过其内部的转换电路转换成视频信号,送入射频调制发射电路(即通过混频电路把摄像头输出的模拟电压信号和本振信号混出射频信号,经放大后发送)。 射频接收器将射频调制发射电路发射过来的射频信号还原成图像并进行显示,从而实现了监控的功能。 发射端的 C8051F310 单片机通过键盘对数字无线发射模块的开始与结束控制。 C8051F310单片机把控制字和所要传送的数 据信息分别写入 nRF905 发射模块进行调制发送。同时,AT89S52 单片机通过键盘在液晶上显示对应的控制信息。 在数字无线接收端,首先,接收端的 C8051F310 单片机把控制字写入 nRF905 数字无线接数字无线接收 解调 数字无线 调制 发射 C8051F310 单片机 C8051F310 单片机 AT89S52 单片机 电源 键盘 液晶显示 数据信息 射频 调制 发射 射频接收 摄像头采集输出视频信号 控制字 控制字 nts收模块,然后其将接收到的信号进行解调,把解调后的数据信息传给 C8051F310 单片机,单片机通过指令控制电机转向。 四、 程序控制: 1、 根据 C8051F310 单片机的内部性能以及 SPI 总线的功能,运用此单片机的指令进行汇编语言编程,按照按键的具体情况,使单片机的 P2.0、 P2.1 和 P2.2 口输出不同的高低电平。C8051F310 单片机 通过 SPI 接口,按时序把地址和要发送的数据送传给 nRF905,通过 nRF905发送出去。 2、在无线发射电路中还用 AT89S52 单片机通过指令对 HY-12864 液晶进行了控制。当无按键按下时液晶上显示“电子工程系 应教 0201 班 杨丽”,再根据按键按下的情况具体设计程序,按不同的键,在液晶上显示不同的字符。 3、数字接收电路相对发射电路要简单,编程思路同发射电路类似。主要是将 nRF905 所接收到的信息通过编程进行比较,将 C8051F310 的 P2.0、 P3.0 同时输出相同的电平。实现 电机转 向,对应的 二极管闪烁 5 次发光 。 nts英文资料及中文翻译 Development of a multi-agent system for robot soccer game 一、 Introduction As modern industrial society progresses, the needs for useful robots are growing. Especially, mobile robots are special issue that gradually expands its realm in industrial and studying topics. Researches on mobile robots have been mainly concentrated on single mobile robot. But, the development of multi-agent system is strongly needed by the growth of complexity of tasks for robots to perform. The multi-agent systems have been studied by many researchersl-3. Generally, multi-agent system is defined as the system composed of more than 2 robots 4 and performs the given task by cooperation. The system has some different factors compared with single robot system. First, the environment for robots to confront is dynamic. In multi-agent system, the robots themselves constitute dynamic environment, because each robot should recognize the other robots as moving obstacles. Many previous researches on mobile robots assume that the environment is static, even for the researches on single mobile robot5,6. Second, since the system performs given task by cooperation, it is necessary to make overall system plan for roles of robots. One of the obvious characteristics of the multi-agent system is cooperation - for example, 4-5 robots carry furniture 7. To cooperate one another, the changes of robots position must be predictable. There are some ways to know the robots position. For example, robots communicate their position one after another, or a supervisor detects robots position and transmits them to robots. It is related to communication problem. Third, each component of the system such as robots, a supervisor, sensors, communication equipment is well developed, because they influence the overall system performance. Also, it is necessary to adopt appropriate architecture. Robot soccer is an interesting domain for studying the multi-agent system. The players must work together: It means a sort of cooperation. Also, they play the game in dynamic environment: predictable and unpredictable environment - our robots and opponents robots, respectively. The main object is to put the ball in opponents goal as frequently as possible in presence of opponents robots which have the same task. So, according to a situation, our robots decide which action they take -defense or offense, how they work and ntsso on. In this point, the system needs real-time sensing, quick decision making and fast behaviors. It is related to system architecture and algorithms. As described above , soccer game includes many characteristics of multi-agent system and is abundant in applying AI techniques. One of the advantages of robot soccer game is direct comparison of different systems. Many robot soccer systems are gathered in some competitions. We participated in a Soccer robot competition in Taejon, Korea called MIROSOT96 8. MIROSOT makes some rules. The rules describe precise specification for soccer game. The playground is rectangular with its length 130cm, its width 90cm. An orange golf ball is selected as the play ball. The size of a robot is restricted within 7.5*7.5*7.5cm. One team consists of three robots. We purpose to make soccer system with three robots. In this paper, we explain some factors to be considered in establishing complete system. First, since the system architecture is very important, we decide the overall system as a centralized on-line system on the basis of surveys of multi-agent systems. Second, the overall system can be divided into three parts - A robot, communication and vision system. We describe the specifications of components of each part and the reasons to decide them. It would be helpful for later improvement. The rest of the paper is organized as follows. Section 2 gives some surveys of system architectures and selection of our soccer robot system. Section 3 gives detailed descriptions of implemented hardware, especially mini robots. Section 4 gives cooperation and path plan algorithm for robot soccer game. Section 5 gives conclusion of this paper and presents further works. 二、 Categorization of multi-agent system and selection of soccer robot system The survey on this issue is closely related in Arais work4. We can categorize multi- agent system based on two criteria. One is Who makes decision and orders? -Centralized / Decentralized , the other is When does the system make plans? - On line / Offline. Centralized system means that a supervisor integrates all available data, plans the behaviors of all the robots and makes commands. Since a supervisor considers all the robots simultaneously, the system can achieve the optimization of the motions of all the robots. But, as the number of robot increases, more computational power of a supervisor is needed. If the supervisor makes any fault, there is no way for the robots to correct it. Decentralized system means that each robot makes plan for itself on the basis of collected information from other robots and its own sensors. In the system, there is not ntsconsiderable increasing computational load as the number of robots increases. Even if one robot fails to work, other robots work well. But, the system cannot guarantee the optimization of the motions of all the robots. Off-line system means that all the paths are planned before all the robots move. Because of no restriction of time and computing power, the system can achieve optimization. But, since the system assumes static environment, it is not robust to small variation of environment. In real world, it may malfunction with some variances. On-line system means real-time planning. It is robust to dynamic environment. But, it needs large computational power and effective algorithm. In a lot of researches, the above two categorizations are interrelated each other. We summarize the researches in Table 1. Table 1. Categorization of multi-agent system who when proposed methods Centralized Off-line cell Decomposition Retraction10 Priority5,6 Centralized On-line Decentralized Off-line Priorityll Decentralized On-line Potential Field 12 Rule-based13 Communication 14 In MIROSOT96, The size of a robot is restricted. Therefore, it is difficult to implement a robot with large computational power. Also, it is important to decide what a robot must equip. Basically, a robot has to equip actuator module and communication module. Additional equipments are selected and implemented considering the space of a robot. Soccer game needs global information of our robots position. So, we decide the centralized system as our system. From the viewpoint of path planning time, we decide the on-line system. Soccer game has fast changing nature and necessitates real-time sensing, fast behaviors, and quick decision making. It is reasonable to adopt on-line system. In centralized on-line system, a supervisor acquires all available information of whole environment and the robots. Simultaneously, a supervisor should plan all the robots paths in real-time. Therefore it requires fast computing power. To decrease the burden of a supervisor, we choose partitioned system which separate main planning ntsand executing. This is somewhat similar to the works of Shakey15, Firby16. In our soccer robot system, a supervisor makes plans of all the robots on the basis of some strategy. Then, a supervisor transmits next desired position to each robot. Each robot receives desired position and executes its control algorithm for position and velocity controls. Simultaneously, each robot takes data of its own local sensor which are fused with desired position into desired input of its own control loop. Therefore, a robot must possess some logic : a sort of a brain. So, our robots have micro-controllers. In this architecture, the system partitions computing burdens. Figure 1 shows the functional diagram of our soccer robot system. Since a supervisor receives positions of the ball and all robots, the system doesnt need bi-directional communication. A supervisor only transmits commands to each robot. In the case of bi-directional communication, the logic of transmitting and receiving order and priority must be needed. It may increase complexity of communication system of both a supervisor and a robot. Figure 1. The constitution of our soccer robot system 三、 System implementation System is composed of three parts - a supervisor, vision and 5 robots. A supervisor is a PC - pentium processor -which makes plan in real time, and vision system has two cameras which have red and blue filter respectively, and image processing board which has a DSP and memory. A robot has a CPU, communication module, IR sensors, motors, etc. These three parts are related one another. Detailed descriptions are given in following chapters. 1. Configuration of individual robot ntsA robot is consisted of mechanical part, CPU board, communication(receiver) module and sensor board. Its size is within 7.5*7.5*7.5 cm. 2. Mechanical part Mechanical part of a robot is consisted of two motors, encoders, gearheads, wheels, a ball caster, and a frame. The frame is designed for easy, compact and hardy integration. Motors and gearheads are selected in consideration for operating voltage, internal resistance, mechanical time constant. Its operating voltage is 6V. Reduction ratio of gearhead is 1:41. A diameter of a wheel is 32 mm. The no-load speed of a motor is 15200 rev/min. So, no-load speed of robots can be calculated as about 62 cm/sec. In real robots, we measure the maximum speed of a robot. The result is about 40cm/sec. Two motors are controlled by a CPU in main board independently. The encoder generates 16 pulses per revolution. 3. CPU board and sensor board Figure 2. The CPU board and sensor board (a) the locations of LEDs in CPU board forrobots position and rotation (b)the locations of IR sensors in sensor board In CPU board, data processing and motor control are carried out. CPU board consists of two PCBs - same size of 7.5cm*6.0cm. We choose 80C196KC as robots CPU. Its basic ntsoperation is to control motors according to the data from a supervisor via communication module. Also, it fuses the data from a supervisor and sensors equipped in itself. 80C196KC has three PWM generators which are used to control motors and 8 channel A/D converters which are used to receive the data from its own sensors. Motor driver is TC 4428 - dual high speed MOSFET driver. For compact spacing, we use EPLD( Erasable Programmable Logic Device) which can perform encoder counting, address decoding, and some logic functions. As can be seen in Figure 2(a), 4 LEDs are in CPU board located above in a robot. Three LEDs make an isosceles triangle. Because LED is the most brightest thing in playground, vision system detects the position and rotation of a robot easily. The other LED located at the center of triangle is used to provide some information to a supervisor. Turning on the LED means that a robot detects the ball by its own sensors. In sensor board, 4 pairs of IR sensor consisted of transmitter and receiver are located in fixed positions. As can be seen in Figure 2(b), one pair is located in higher position to distinguish a robot from the ball. It can detect only the ball. The other three pairs are located in the lower position. They can detect the ball and robots. So, a CPU can recognize the obstacle detected by its own sensors - a ball and a robot. Since sensor board is in front of a robot, it can perform local searching in front of a robot. Figure 3. The shape of digitally coded data Figure 4. The constitution of communication signal 3. Communication ntsWe choose unidirectional communication - from a supervisor to robots. Generally, to share more information, bi-directional communication is better. But, it needs more space and increases the complexity of tasks which robots and a supervisor carry out. In our system, we use vision system as a global monitor. So, it is not necessary for a robot to transmit its data to a supervisor. Therefore, we adopt unidirectional communication. There are two prevalent communication methods - IR and R/F. IR communication has a problem such that it is affected by light. So, in real competition, it may malfunction. Therefore, we modify the commercial R/F communication module and introduce a digital method for high precision and good reliability of information transfer. We set the carrier frequency as 4kHz. Two sections make one digital data. If there is a state change between two sections in the digital data, this digital data means 1 bit. If no state change occurs, it means 0 bit. Between digital data, a state change always takes place. This is described in Figure 3. So, Data transfer ratio is 2000bit/sec. We define a channel as a basic unit and a channel has 9 bits - one bit is start bit and the other 8 bits are data bits. Since supervisor sends position and orientation to each robot, one robot needs 3 channels. We define a block as a basic command unit. As in Figure 4, one block consists of 17 channels because each of five robots needs 3 channels and there are a start channel and an extra channel for an unexpected future purpose. So, the transfer rate is about 13 block per second. It means that a supervisor can transfer information to five robots 13 times per second. 4. Vision system It is very important to recognize the positions of robots and the ball in real-time. We use two monochrome cameras. One has red filter and the other has blue filter. As mentioned above, a robot has an isosceles triangle shaped LED configuration. Vision system can easily detect a robot. As for a ball, vision system compare two image for detecting the ball. We regulate LUTs( Look Up Table ) of image data from two cameras to eliminate other colors except a ball color before competition. In our experiment, vision system with one monochrome camera cannot detect a ball robustly. Therefore, we use two cameras. As for opponents robots detection, MIROSOT make it a rule to have a solid 3.5cm*3.5cm patch of its team color visible on top. We also regulate LUTs to make vision system detect opponents robots. In our experiment, our vision system can detect a ball and ten robots 5 times per a second. 5 Position control of a robot The block diagram of position control of a robot is presented in Figure 5. The ntsfigure shows the partitioned system : Planning and executing. Global Monitoring loop representing the Planning is a feedback loop in which vision system detect a robot position and a supervisor makes commands. As soon as vision system detects positions of robots and the ball, a supervisor makes path planning of each robot according to the current position data. It is slow feedback. In Local Control loop representing executing , each robots execute the position and velocity control with encoder signals and desired position. Figure 5. Constitution of Control system ntsFigure 6. The configuration of our system.a detailed description. Figure 7. The actual robot with a golf ball 三、 Cooperation and path plan algorithm for robot soccer game We are making algorithms in consideration for two points. One is for cooperation; the other is for path plan of each robot. In MIROSOT96, three robots were permitted to play game. Therefore, we make algorithms considering three robots as a multi-agent system. For viewpoint of cooperation, one robot is a goal keeper, the others takes the roles according to the modes. There can be several modes. We tested 4 modes. Figure 8 shows 4 modes. Basically, we use divide-and-conquer heuristics. We divide the playground into two areas; assign each area to two robots. Each robot takes the role according to the assigned area. Mode (a) and (b) are natural division of the playground. Mode (c) has wide attack zone. Mode (d) is that two robots are all-round players. These modes are changed against opponents strategy. We are going to test established modes and develop more effective modes. For path plan of each robot, we use parametric cubic spline. The cost function is consisted of three term. One is for minimization of variations of curvature, the other is for minimization of time, the third is for obstacle avoidance. The results of one robot experiment show that our algorithm can be applied to robot soccer game17.We are going to develop more effective algorithm for robot soccer game. nts Figure 8. The 4 tested modes 四、 Conclusions and further works In this paper, we provide the reasons why we adopt centralized on-line system as our robot soccer system and specification of implemented hardware. We survey many multi-agent systems from the viewpoint of system architecture. Using two criteria, we categorize the multi-agent systems. Then, we select the centralized on-line system considering the nature of robot soccer game. This paper explains suitability of our system to robot soccer game for many reasons. Also, we explain
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:0073、无线视频监控系统设计毕业论文资料
链接地址:https://www.renrendoc.com/p-550679.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!