



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4.1.2 利用二分法求方程近似解 本节教材分析求方程的解是常见的数学问题,这之前我们学过一元一次、一元二次方程,但有些方程求精确解较难.本节从另一个角度来求方程的近似解,这是一种新的思维方式,但在现实生活中也有着广泛的应用.用二分法求近似解的特点是:运算量大,且重复相同步骤,因此适合用计算器或计算机进行运算.在教学过程中要让学生体会到人类在方程求解中不断进步.三维目标1、知识与技能:(1)解二分法求解方程的近似解的思想方法,会用二分法求解具体方程的近似解;(2)体会程序化解决问题的思想,为算法的学习作准备。2、过程与方法:(1)让学生在求解方程近似解的实例中感知二分发思想;(2)让学生归纳整理本节所学的知识。3、情感、态度与价值观:体会二分法的程序化解决问题的思想,认识二分法的价值所在,使学生更加热爱数学;培养学生认真、耐心、严谨的数学品质。教学重点:用二分法求解函数f(x)的零点近似值的步骤。教学难点:为何由a b 便可判断零点的近似值为a(或b)?教学建议: 这一部分教学的首要任务是让学生会求方程的近似解,把握好三点:(1)用框图表述利用二分法求解方程实数解的过程,能够根据这样的过程进行实际求解;(2)使用科学计算器求解.掌握二分法只是掌握了求解的算法,具体计算往往需要用计算工具,我们要求学生会用科学计算器完成计算;(3)尽管使用科学计算器,求一个方程的解也是很费事的,学生容易急躁和出错,要引导学生踏踏实实学习,认认真真做事.其次,引导学生体会逼近思想在求解中的应用.新课导入设计导入一:( 创设情景,揭示课题)提出问题:(1)一元二次方程可以用公式求根,但是没有公式可以用来求解放程 x2x6=0的根;联系函数的零点与相应方程根的关系,能否利用函数的有关知识来求她的根呢?(2)通过前面一节课的学习,函数f(x)=x2x6在区间内有零点;进一步的问题是,如何找到这个零点呢?导入二:(事例导入)有12个小球,质量均匀,只有一个球是比别的球重,你用天平称几次可以找出这个球,要求次数越少越好.(让同学们自由发言,找出最好的办法)解:第一次,两端各放六个球,低的那一端一定有重球;第二次,两端各放三个球,低的那一端一定有重球;第三次,两端各放一球,如果平衡,剩下的就是重球,否则,低的就是重球.其实这是一种二分法的思想,那么什么叫二分法.4.1.2用二分法求方程的近似解一、教学目标1、知识与技能:(1)解二分法求解方程的近似解的思想方法,会用二分法求解具体方程的近似解;(2)体会程序化解决问题的思想,为算法的学习作准备。2、过程与方法:(1)让学生在求解方程近似解的实例中感知二分发思想;(2)让学生归纳整理本节所学的知识。3、情感、态度与价值观:体会二分法的程序化解决问题的思想,认识二分法的价值所在,使学生更加热爱数学;培养学生认真、耐心、严谨的数学品质。二、 教学重点、难点重点:用二分法求解函数f(x)的零点近似值的步骤。难点:为何由a b 便可判断零点的近似值为a(或b)?三、 学法与教法1、想想。2、教法:探究交流,讲练结合。四、教学过程(一)、创设情景,揭示课题提出问题:(1)一元二次方程可以用公式求根,但是没有公式可以用来求解放程 x2x6=0的根;联系函数的零点与相应方程根的关系,能否利用函数的有关知识来求她的根呢?(2)通过前面一节课的学习,函数f(x)=x2x6在区间内有零点;进一步的问题是,如何找到这个零点呢?(二)、研讨新知 一个直观的想法是:如果能够将零点所在的范围尽量的缩小,那么在一定的精确度的要求下,我们可以得到零点的近似值;为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围。 取区间(2,3)的中点2.5,用计算器算得f(2.5)0.084,因为f(2.5)*f(3)0,所以零点在区间(2.5,3)内;再取区间(2.5,3)的中点2.75,用计算器算得f(2.75)0.512,因为f(2.75)*f(2.5)0,所以零点在(2.5,2.75)内;由于(2,3),(2.5,3),(2.5,2.75)越来越小,所以零点所在范围确实越来越小了;重复上述步骤,那么零点所在范围会越来越小,这样在有限次重复相同的步骤后,在一定的精确度下,将所得到的零点所在区间上任意的一点作为零点的近似值,特别地可以将区间的端点作为零点的近似值。例如,当精确度为0.01时,由于2.53906252.53125=0.00781250.01,所以我们可以将x=2.54作为函数f(x)=x2x6零点的近似值,也就是方程x2x6=0近似值。这种求零点近似值的方法叫做二分法。1师:引导学生仔细体会上边的这段文字,结合课本上的相关部分,感悟其中的思想方法生:认真理解二分法的函数思想,并根据课本上二分法的一般步骤,探索其求法。 2为什么由a b 便可判断零点的近似值为a(或b)?先由学生思考几分钟,然后作如下说明:设函数零点为x0,则ax0b,则:0x0aba,abx0b0;由于a b ,所以x0 a ba,x0 b ab,即a或b 作为零点x0的近似值都达到了给定的精确度。(三)、巩固深化,发展思维1、学生在老师引导启发下完成下面的例题例2借助计算器用二分法求方程2x3x7的近似解(精确到0.01)问题:原方程的近似解和哪个函数的零点是等价的?师:引导学生在方程右边的常数移到左边,把左边的式子令为f(x),则原方程的解就是f(x)的零点。生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用二分法求解(四)、归纳整理,整体认识在师生的互
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公路货物途中安全防护
- 北京联通服务优化调度系统:剖析与创新设计
- 北京城区停车位供需矛盾剖析与化解路径探究
- 创业网络、资源整合与应变能力:新企业绩效提升的多维解析
- 博弈论在多智能体学习中的应用-洞察及研究
- 金融控股公司挂名法人授权委托及风险隔离协议
- 深圳经济特区智慧社区房地产项目股权转让合同
- 个人购车金融分期担保服务合同
- 专利权抵押贷款合同范本大全
- 顾客咨询方案范文大全
- 2025年未来就业报告
- 使用吹风机课件
- 安检流程课件
- 宠物经济下的宠物食品包装创新研究报告:2025年市场潜力分析
- 中国未来50年产业发展趋势白皮书(第四期)
- 2025年关于广告设计合同格式范本
- 临床基于MDT平台下的“5A”护理模式在改善脑卒中后顽固性呃逆患者中应用
- 基础电工安全培训课件
- 2025年财会类资产评估师资产评估基础-资产评估基础参考题库含答案解析(5卷)
- 公安宣传打击黄赌毒课件
- 法律顾问合同协议书模板
评论
0/150
提交评论