北师大版选修23 组合3 教案.doc_第1页
北师大版选修23 组合3 教案.doc_第2页
北师大版选修23 组合3 教案.doc_第3页
北师大版选修23 组合3 教案.doc_第4页
北师大版选修23 组合3 教案.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教案表 课题1.2.2组合(第三课时)课型新授课教学目标 知识与技能 理解组合的意义,能写出一些简单问题的所有组合。明确组合与排列的联系与区别,能判断一个问题是排列问题还是组合问题。过程与方法 了解组合数的意义,理解排列数与组合数 之间的联系,掌握组合数公式,能运用组合数公式进行计算。情感、态度与价值观 能运用组合要领分析简单的实际问题,提高分析问题的能力。重点难点教学重点 组合的概念和组合数公式教学难点 组合的概念和组合数公式教具准备 多媒体课时 安排1教学过程与教学内容教学方法、教学手段与学法、学情教学过程 组合数的性质1 一般地,从n个不同元素中取出个元素后,剩下个元素因为从n个不同元素中取出m个元素的每一个组合,与剩下的n - m个元素的每一个组合一一对应,所以从n个不同元素中取出m个元素的组合数,等于从这n个元素中取出n - m个元素的组合数,即 在这里,主要体现 “取法”与“剩法”是“一一对应”的思想证明 又,说明 规定 ;等式特点 等式两边下标同,上标之和等于下标; 此性质作用 当时,计算可变为计算,能够使运算简化. 例如=2002; 或2组合数的性质2 +一般地,从这n+1个不同元素中取出m个元素的组合数是,这些组合可以分为两类 一类含有元素,一类不含有含有的组合是从这n个元素中取出m -1个元素与组成的,共有个;不含有的组合是从这n个元素中取出m个元素组成的,共有个根据分类计数原理,可以得到组合数的另一个性质在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想证明 + 说明 公式特征 下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与大的相同的一个组合数; 此性质的作用 恒等变形,简化运算 例11一个口袋内装有大小不同的7个白球和1个黑球,(1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法?(3)从口袋内取出3个球,使其中不含黑球,有多少种取法?解 (1),或,;(2);(3)例12(1)计算 ;(2)求证 +解 (1)原式;证明 (2)右边左边例13解方程 (1);(2)解方程 解 (1)由原方程得或,或, 又由得且,原方程的解为或上述求解过程中的不等式组可以不解,直接把和代入检验,这样运算量小得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论