



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
培养学生数学思想方法的策略研究朔城区第六小学 苏翠仙一、数学教学中渗透数学思想方法的必要性数学思想是数学活动的基本观点,而数学方法则是在数学思想指导下,为数学活动提供思路和逻辑手段以及具体操作原则的方法。所以说,数学思想方法以数学知识为载体,是数学知识发生过程中的提炼、抽象、概括和升华,是对数学规律更一般的认识。数学思想方法和数学知识相比,知识的有效性是短暂的,思想方法的有效性却是长期的,能够使人“受益终生”。布鲁纳指出,掌握基本数学思想和方法能使数学更易于理解和记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。事实上,数学思想方法不但对学生学习具有普遍的指导意义,而且有利于学生形成科学的思维方式和思维习惯,为将来从事科学研究和参加社会实践打下良好基础。因此,向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口,是未来社会的要求和 国际数学教育发展的必然结果。二、小学数学教学中应渗透哪些数学思想方法古往今来,数学思想方法不计其数,每一种数学思想方法都闪烁着人类智慧的火花。一则由于小学生的年龄特点决定有些数学思想方法他们不易接受,二则要想把那么多的数学思想方法渗透给小学生也是不大现实的 。因此,我们应该有选择地渗透一些数学思想方法。笔者认为,以下几种数学思想方法学生不但容易接受,而且对学生数学能力的提高有很好的促进作用。1、化归思想化归思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个 较简单的问题。应当指出,这种化归思想不同于一般所讲的“转化”、“转换”。它具有不可逆转的单向性。 例1 袋鼠和小白兔进行跳跃比赛,袋鼠每次可向前跳4 米小白兔每次可向前跳2 米。它们每 秒种都只跳一次。比赛途中,从起点开始,每隔12 米设有一个陷阱, 当它们之中有一个掉进陷阱时,另 一个跳了多少米? 这是一个实际问题,但通过分析知道,当袋鼠(或小白兔)第一次掉进陷阱时,它所跳过的距离即是它每次所跳距离4 (或2 )米的整倍数,又是陷阱间隔12 米的整倍数,也就是4 和12 的“ 最小公倍数”(或2 和12 的“最小公倍数”)。针对两种情况,再分别算出各跳了几次,确定谁先掉 入陷阱,问题就基本解决了。上面的思考过程,实质上是把一个实际问题通过分析转化、归结为一个求“最小公倍数”的问题,即把一个实际问题转化、归结为一个数学问题,这种化归思想正是数学能力的表现之一。数形结合思想是充分利用“2、数形结合思想形”把一定的数量关系形象地表示出来。即通过作一些如线段图、树形图、长 方形面积图或集合图来帮助学生正确理解数量关系,使问题简明直观。3、极限思想 我们小学数学中,也存在着许多极限思想。如最大的自然数,最小的小数等。谈及这些,主要是达到将极限思想扩展到生活以及生活中的学习和认识的目的,这才真正达到极限思想的实质。4、统计思想 统计思想要求学生养成一定的搜集、整理的意识和进行简单发现、推论的能力。反映在日常数学教学中,即加大调查课、实践课的力度,培养学生良好的自学习惯和合作意识,使学生在搜集、整理和归类、推理中形成良好的统计意识。此外,还有符号思想、对应思想、集合思想、函数思想等,在小学数学教学中都应注意有目的、有选择、 适时地进行渗透。三、小学数学教学应如何进行数学思想方法的渗透小学数学教学中进行数学思想方法的渗透,具体表现在教师在更新观念,从思想上不断提高对渗透数学思想方法重要性的认识的基础上,把掌握数学知识和渗透数学思想方法同时 纳入教学目的,把数学思想方法教学的要求融入备课环节;同时,要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪 些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。比如,函数思想中的“变与不变”在小学低中高年级渗透的程度因学生的年龄特征和接受水平各异。低年级只要求学生能够联系生活,认识到相关联的三个量,其中一种量不变,另外两种量发生相反或相同的增减变化即可;中年级则在低年级已知的基础上,进一步认识一种量不变,另外两种量发生成倍相反或相同的变化,但不一定要求对这不同类型的“变与不变”进行深度辨析;高年级则要求学生进入深度辨析阶段,从比例关系上区分“变与不变”的差异。也就是说,数学思想的渗透是随着学生已有知识经验的积累、能力的提高逐步加深的。四、小学数学教学中加强数学思想方法的渗透应注意些什么1、把握渗透的规律性,为学生营造广阔的探索空间。 数学思想方法的教学必须通过具体的教学过程加以实现。因此,必须把握好教学过程中进行数学思想方法 教学的契机概念形成的过程,结论推导的过程,方法思考的过程,思路探索的过程,规律揭示的过程等;要注意有机结合、自然渗透,要有意识地潜移默化地启发学生领悟蕴含于数学 、知识之中的种种数学思想方法,切忌生搬硬套、和盘托出、脱离实际等适得其反的做法。一般在小学阶段,采取小组合作的形式,利用学生熟悉的生活挖掘素材,加之多媒体的教学手段,使学生在动手操作、讨论、发现中形成一定的数学思想,符合规律探索的一般过程,比较合理。2、注重渗透的反复性,为学生提供楼梯式实践的舞台。 数学思想方法是在启发学生思维过程中逐步积累和形成的。为此,在教学中,首先要特别强调解决问题以 后的“反思”,因为在这个过程中提炼出来的数学思想方法,对学生来说才是易于体会、易于接受的。如通过 分数和百分数应用题有规律的对比板演,指导学生发现、归纳解答这类应用题的关键,找到具体数量的对应分率,从而使学生自己体验到对应思想和化归思想。其次要注意渗透的长期性,应该看到,对学生数学思想方法的渗透 ,不是一朝一夕就能见到学生数学能力提高的,而是有一个过程。数学思想方法必须经过循序渐进和反复训练, 才能使学生真正地有所领悟。3、认清渗透的可行性和“渗透”性,使之真正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年数字文化产业发展中的商业模式创新与知识产权运营报告
- 2025年教育培训机构品牌建设与市场推广策略深度实战报告
- 2025年海洋生态修复项目环境影响评价与政策响应报告
- 2025年快消品包装行业环保技术创新趋势报告
- 2025年科技与互联网行业云计算服务模式创新报告
- 中小学心理健康评估测评工作方案(35篇)
- Unit 1 Happy Holiday 单元测试题(无答案)2025-2026学年人教版(2024)英语八年级上册
- 巡视组业务培训课件模板
- 2025年光伏行业市场前景及投资研究报告:研究方法
- 输电运检中心培训课件
- 公司法务知识培训会课件
- 2025-2026学年秋季第一学期学校德育工作安排表
- 2025年全面质量管理知识竞赛题库及参考答案
- 医药行业KA经理工作汇报
- 浙教版2025-2026学年八年级上科学第1章 对环境的察觉 单元测试卷
- 纤维素基包装生物力学性能-洞察及研究
- 2025年海南省财金集团有限公司招聘笔试模拟试题及答案解析
- 2025年炭石墨负极材料项目合作计划书
- 工程施工队课件
- 2025-2026学年人教版(2024)初中生物八年级上册(全册)教学设计(附目录)
- 桥梁施工技术创新路径与工程应用研究综述
评论
0/150
提交评论