立体几何中的存在性问题.doc_第1页
立体几何中的存在性问题.doc_第2页
立体几何中的存在性问题.doc_第3页
立体几何中的存在性问题.doc_第4页
立体几何中的存在性问题.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

立体几何中的存在性问题立体几何中的存在性问题1(09福建)如图,四边形ABCD是边长为1的正方形,且MD=NB=1,E为BC的中点.()求异面直线NE与AM所成角的余弦值;()在线段AN上是否存在点S,使得ES平面AMN?若存在,求线段AS的长;若不存在,请说明理由.k.s.5.u.c.o.m 解析:(1)在如图,以D为坐标原点,建立空间直角坐标依题意,得。,所以异面直线与所成角的余弦值为.(2)假设在线段上存在点,使得平面.,可设又.由平面,得即故,此时.经检验,当时,平面.故线段上存在点,使得平面,此时.2(09宁夏海南)如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点. ()求证:ACSD; ()若SD平面PAC,求二面角P-AC-D的大小;()在()的条件下,侧棱SC上是否存在一点E, 使得BE平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.解法一:()连BD,设AC交BD于O,由题意。在正方形ABCD中,所以,得. ()设正方形边长,则。又,所以, 连,由()知,所以, w.w.w.k.s.5.u.c.o.m 且,所以是二面角的平面角。由,知,所以,即二面角的大小为。()在棱SC上存在一点E,使由()可得,故可在上取一点,使,过作的平行线与的交点即为。连BN。在中知,又由于,故平面,得,由于,故.解法二:();连,设交于于,由题意知.以O为坐标原点,分别为轴、轴、轴正方向,建立坐标系如图。设底面边长为,则高。于是 w.w.w.k.s.5.u.c.o 从而()由题设知,平面的一个法向量,平面的一个法向量,设所求二面角为,则,所求二面角的大小为()在棱上存在一点使. 由()知是平面的一个法向量,且 设 w.w.w.k.s.5.u.c.o.m 则而即当时, w.w.w.k.s.5.u.c.o.m 而不在平面内,故3(09浙江)如图,平面平面,是以为斜边的等腰直角三角形,分别为,的中点, ()设是的中点,证明:平面; ()证明:在内存在一点,使平面,并求点到,的距离证明:(I)如图,连结OP,以O为坐标原点,分别以OB、OC、OP所在直线为轴,轴,轴,建立空间直角坐标系O,则,由题意得,因,因此平面BOE的法向量为,得,又直线不在平面内,因此有平面(II)设点M的坐标为,则,因为平面BOE,所以有,因此有,即点M的坐标为,在平面直角坐标系中,的内部区域满足不等式组,经检验,点M的坐标满足上述不等式组,所以在内存在一点,使平面,由点M的坐标得点到,的距离为4.(09浙江)如图,在长方形中,为的中点,为线段(端点除外)上一动点现将沿折起,使平面平面在平面内过点作,为垂足设,则的取值范围是 解:可采用二个极端位置法,即对于F位于DC的中点时,随着F点到C点时,因平面,即有,对于,又,因此有,则有,因此的取值范围是5.(07北京)如图,在中,斜边可以通过以直线为轴旋转得到,且二面角是直二面角动点的斜边上(I)求证:平面平面;(II)当为的中点时,求异面直线与所成角的大小;(III)求与平面所成角的最大值解(I)平面,(II)作,垂足为,连结(如图),则,是异面直线与所成的角在中,又在中,故(III)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论