机械毕业设计英文外文翻译353汽车变速箱动态建模轮齿局部缺陷的早期检测.docx

机械毕业设计英文外文翻译353汽车变速箱动态建模轮齿局部缺陷的早期检测

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:553153    类型:共享资源    大小:80.07KB    格式:ZIP    上传时间:2015-12-06 上传人:QQ28****1120 IP属地:辽宁
6
积分
关 键 词:
机械毕业设计英文翻译
资源描述:
机械毕业设计英文外文翻译353汽车变速箱动态建模轮齿局部缺陷的早期检测,机械毕业设计英文翻译
内容简介:
附录 1 Dynamic Modeling of Vehicle Gearbox for Early Detection of Localized Tooth Defect Nagwa Abd-elhalim, Nabil Hammed, Magdy Abdel-hady, Shawki Abouel-Seoud and Eid S. Mohamed Helwan University ABSTRACT Dynamic modeling of the gear vibration is a useful tool to study the vibration response of a geared system under various gear parameters and operating conditions. An improved understanding of vibration signal is required for early detection of incipient gear failure to achieve high reliability. However, the aim of this work is to make use of a 6-degree-of-freedom gear dynamic model including localized tooth defect for early detection of gear failure. The model consists of a gear pair, two shafts, two inertias representing load and prime mover and bearings. The model incorporates the effects of time-varying mesh stiffness and damping, backlash, excitation due to gear errors and modifications. The results indicate that the simulated signal shows that as the defect size increases the amplitude of the acceleration signal increases. The crest factor and kurtosis values of the simulated signal increase as the fault increases. Though the crest factor and kurtosis values give similar trends, kurtosis is a better indicator as compared to crest factor. KEYWORDS: Vibration acceleration, system modeling, Crest Factor, Kurtosis value, defect size, gear meshing, pinion, gear nts NOMENCLATURE DJ , 1J , 2J , LJ Drive motor, pinion, gear, and load mass moment of inertia replacement decision in a suitable time. 1m , 1m Masses of pinion and gear. DT Driving motor torque. LT Load torque. 1FT , 2FT Friction torque. 1C , 2C Viscous damping coefficient of pinion and gear bearing. mCGear mesh damping. mKGear mesh stiffness. 1K , 2K Pinion and gear shaft stiffness. 4 The variance square. N The number of samples. f The defect width in face direction. hK Unit width Hertzian stiffness. D , 1 , 2 , L Angular displacement of drive motor, pinion, gear and load. D , 1 , 2 , L Angular velocity of drive motor, pinion, gear and load. D , 1 , 2 , L Angular acceleration of drive motor, pinion, gear and load. nts INTRODUCTION Much of the past research in the dynamic modeling area has concluded that an essential solution to the problem is to use a comprehensive computer modeling and simulation tool to aid the transmission design and experiments. These have been two major obstacles to such an approach: (1) Progress in understanding of the basic gear rattle phenomenon has been limited and slow. This is because the engine-clutch-transmission system involves some strong nonlinearities including gear backlash, multi-valued springs, dry friction, hysteresis, and the like. (2)The gear rattle is a system problem and not only problem of gear teeth. Even through the research and industrial community has discussed the difficulties in varies stages of the problem, yet no thorough frame work covering the entire investigation process of such problem currently exists. This is largely due o the complexity of the power train system, which may make a computer analysis tool inefficient, in particularly when many different elements and clearances are encountered (e.g., gears, bearings, splines, synchronizers, and clutch) 1-3. A comprehensive review of mathematical models used in gear dynamics, published before 1986, has been presented by 4. In this review, gear dynamic models without defects have been discussed. In the past few years, researchers have been working on the gear dynamic models which include defects like pitting, spalling, crack and broken tooth. A single-degree-of-freedom model is used which include the e4ffects of variable mesh stiffness, damping, gear errors, profile modifications and backlash. The effect of time-varying meshing damping is also included in this case, The solution is obtained by using the harmonic balance methods. A method of calculated the optimum profile modification has been proposed in order to obtain a zero vibration of the gear pair 5-7. They also proposed a linear approximate equation to mode the gear pair by using a single-degree-of freedom model Gear rattle vibration is a undesirable vibration for passenger cars and light trucks equipped with manual transmissions. Unlike automatic transmissions, manual ntstransmission do not have the high viscous damping inherent to a hydrodynamic torque converter to suppress the impacting of gear teeth oscillating through their gear backlash. Therefore a significant level of vibration an be produced by the gear rattle and transmitted both inside the passenger compartment and outside the vehicle. Gear rattle, idle shake, and other vibration generated in the automobile driveline have become an important concern to automobile manufactures in their pursuit of an increased level of perception of high vibration quality. The torsional vibration o driveline is a major source of gear rattle vibration. The manual transmission produces gear rattle by the impacting of gear oscillating through their gear backlash. The impact collisions are transmitted to the transmission housing via shafts and bearings 8. The gear pair dynamic models including defects have been done by 9. The study suggests that little work has been done on modeling of gear vibration with defect and an accurate analytical procedure to predict gear vibrations in the presence of local tooth fault has yet to be developed.However, the purpose of this paper is to develop a multidegree-of-freedom nonlinear model for a gear pair that can be used to study the effect of lateral-torsional vibration coupling on vibration response in the presence of localized tooth defect. A typical fault signal is assumed to be impulsive in nature because of the way it is generated. The simulation artificially introduced pitting in gears in multi-stage automotive transmission gearbox at different operation conditions (load, speed, etc). The processing of simulated and experimental signals is also introduced. SIGNAL-PROCESSING TECHNIQUE Among various signal-processing techniques, crest factor and kurtosis analysis have been used for analyzing the whole vibration signal for the early detection of fault. In this section, crest factor and kurtosis value have been explained. MATHEMATICAL MODEL FORMULATION Helical gears are almost always used in automotive transmissions. The meshing stiffness of a helical tooth pair is time-varying 10, and was modeled as a series of suggested spur gears so that the simulation techniques for spur gears can be applied. ntswhere M is Module (mm), b is Face width (mm), 1 is pressure angle (deg), is helix angle (deg) and D1 is pitch diameter (mm). Fig. 2 shows the equivalent gear system in the first gear-shift, where the main parameters for the gear system of Fiat-131 gearbox and the equivalent gear system in the first gear-shift are also shown in the figures. 附录 2 汽车变速箱动态建模轮齿局部缺陷的早期检测 Nagwa Abd-elhalim, Nabil Hammed, Magdy Abdel-hady, Shawki Abouel-Seoud and Eid S. Mohamed 阿勒旺大学 摘要 在研究齿轮系统中各种齿轮参数的振动响应和操作条件时,齿轮振动的动态建模是一个非常有用的工具。对早期的齿轮检测提出了一种改进理解的振动信号,但还没达到高的可靠性。 但是,这项工作的目的是利用一个 6 自由度的齿轮动力学模型对齿轮轮齿缺陷故障的早期检测。该模型包括一对齿轮副、两个轴、两个惯性负载、动力传动装置和轴承。由于齿轮的误差和变动,该模型被采用时受到时变啮合刚度、阻尼、反弹和励磁的影响。模拟信号显示的结果表明,随着缺陷尺寸的增加加速度信号的振幅增加。模拟信号的波峰因素和峰值随着缺陷的增加而增加。虽然波峰 因素和峰值做同样的趋势,但和波峰因素相比峰值是一个比较好的指标。 关键词: 振动加速度、系统建模、波峰因素、峰值、缺陷大小、齿轮啮合、齿轮 nts 专业术语 DJ , 1J , 2J , LJ 驱动电机、小齿轮、大齿轮和负载在一定时间内的惯性矩 1m , 1m 大齿轮、小齿轮的模数 DT 发动机驱动转矩 LT 负载力矩 1FT , 2FT 摩擦力矩 1C , 2C 齿轮、轴承的粘滞阻尼系数 mC 齿轮啮合阻尼 mK 齿轮啮合刚度 1K , 2K 齿轮、齿轮轴的刚度 4 平方差 N 样本数量 f 宽度方向的缺陷 hK 单位宽度的刚度 ntsD , 1 , 2 , L 驱动电机、小齿轮、大齿轮和负载的角位移 D , 1 , 2 , L 驱动电机、小齿轮、大齿轮和负载的角速度 D , 1 , 2 , L 驱动电机、小齿轮、大齿轮和负载的角加速度 引言 在大多数过去的动态建模研究领域中,解决问题的重要办法是全面使用计算机建模和仿真工具来辅助变速器的设计和实验。这种方法有两种主要的障碍:( 1)对齿轮传动中噪声基本认识的进展是有限的和缓慢的。这是因为发动机离合器传动系统中包括齿轮侧隙、多值弹簧、非线性滞后等等。( 2)齿轮发出的噪声是一个系统问题,并不是齿轮的唯一问题。既使是工业研究领域已经讨论了这个问题在不同阶段所出现的不同问题,但并没有彻底覆盖工作的框架,整个研究过程中的问题依然存在。这主要是由于列车电力系统的复杂性,可能导致你的计算机的分析工具效率 不高,尤其是工作中遇到许多不同的因素和间隙(例如:齿轮、轴承、花键、同步器和离合器)。 在 1986 年出版之前,对齿轮动力学中提出的齿轮动态建模进行了审查。这次审查中,对
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:机械毕业设计英文外文翻译353汽车变速箱动态建模轮齿局部缺陷的早期检测
链接地址:https://www.renrendoc.com/p-553153.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!