1593骞存椂浼藉埄鐣ョ殑Le鈥ecaniche涓殑鏃╂湡TMM.docx

1593年时伽利略的Le•Mecaniche中的早期TMM

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:553255    类型:共享资源    大小:162.56KB    格式:ZIP    上传时间:2015-12-04 上传人:QQ28****1120 IP属地:辽宁
6
积分
关 键 词:
机械毕业设计英文翻译文献翻译
资源描述:
1593年时伽利略的Le•Mecaniche中的早期TMM,机械毕业设计英文翻译文献翻译
内容简介:
附录 外文文献翻译 1593 年时伽利略的 Le Mecaniche 中的 早期 TMM Marco Ceccarellia, 摘 要 本论文主要论述和评价伽利略在机械工程原理方面的成就。 Le Mecaniche 这篇简短的论文,自从它在 TMM 方面被撰稿为第一本学术教科书以及在论文中已经使用现代观点后,它就被认为在机械工程上有着很重要的历史意义。 关 键词: 机械工程历史,机械力学, TMM, TMM 历史,伽利略 文章大纲 1.介绍 2.对伽利略 Le Mecaniche 的回顾 3.Le Mecaniche 对现代的 意义 4.总结 第一章 .引 言 在文艺复兴早期,随着实际应用的增多和社会需求的增加,产生了对理论概念的需要,机械工程这一主题就引起了越来越多的注意。虽然在文艺复兴期间 ,个别的研究和机器设计有所发展并获得了重要的进步,但是这破坏了学科界限的规范。事实上,在大学里没有团体致力于研究机械工程的实际应用方面。机械力学这一课题被当作应用数学来教授,更有一些不成功 的人企图不在大学框架规划内为工程师建立一套详细而精确的设计计划。 在 1597-1598 年,伽利略( 1564-1642)在非常有名的帕多瓦大学里成功地提出了第一个关于机械力学独立的学术课程 .在这里,他使用了这篇简短的论文“ Le Mecaniche”(它可以被译为机械问题)。在 1593 年,这篇论文似乎已经被写出来了。而在伽利略的研究工作中,Le Mecaniche 通常被认为是次要的工作,因为在机械力学这一方面它只是伽利略著作发展过程中最初的几步。 在 Le Mecaniche 中,伽利略通过提升重物来分析机器的基本原理,即杆、绞盘、滑轮,和螺旋。 通过调查机械的实际操作过程和使用适当的模型来精密分析这些机器,而这些模型建立在早期的几何学和运动学。另外,在论文中提到了被大家普遍关心的实际问题,因此,它已经被认为对实用工程和工程设计有了一定的用处。 所有的机构通过适当的模型来分析研究,说得更精确些,伽利略通过应用扛杆系统来研究要分析的机构。因此,机械的扛杆原理被认为是最基本的原理。伽利略明确地引用说,这与阿基米德的“机械问题”中提到的经典法是一致的。伽利略也提到这项工作由Pappus Alexandrinus 做过。伽利略看起来似乎不仅已经被 Guidobaldo Del Monte 极大地鼓舞着,而且也被像 Alessandro Piccolomini 、 Francesco Maurolico 、 Federico Commandino和 Giovan Benedetti 以及 Girolamo Cardano 这些人的工作极大地鼓舞着。在那时,他们这些人正在研究决定刚性物体重心的问题,且也被 Aristotle、 Pappus Alexandrinus and Archimedes的古典著作影响着。 在 Le Mecaniche 中,伽利略解释到,决定刚体重心的理论分析的结果能被运用到研究工程学的实际问题当中去。实际上,这些问题当作的一个方面使得Le Mecaniche 成为机械学术领域和现代工程学发展过程中的一个里程碑。 Guidobaldo Del Monte 所写的先驱著作“ Mechanicorum Liber”被认为是最早承认力学在机械制造中的重要性。实际上伽利略看来似乎已经从 Del Monte 的著作中和他与 Del Monte 友好的接触中得到了灵感。 nts在本论文中,用一种现代的数据整理分析的方法来评论 Le mecaniche 论文,并且它的意义被按照历史上的和学术上的观点论述。 第二章伽利略 Le Mecaniche 的回顾 这篇简短的论文由一些小章节组成,即就是,关于力学的介绍和所用的仪器设备,定义,机械广告,秤和扛杆系,绞盘,滑轮,螺旋,推进力。 伽利略在开始撰写这篇论文时就强烈地抨击一种思想,那就是无论什么都可以被机械制造出来,这与他致力于创造永动机想法是互相矛盾的。然而,他强调,当机器的操作运转能完全地被力所作用的时候,机器就能成为很有用的强大的工具。因此,他用机械的力学性能介绍了提升重物的例子,这关系到 力、位移和速度之间的作用关系。实际上,通过强调当同样的大小冲量时,较大的力产生较小的速度,较小的力产生较大的速度,伽利略清楚地阐述了机械动力这一概念。伽利略工程学的观点,被一种“动力”更进一步地阐述了,那就是包括操作员在内,动力是任何一种原始状态的推动器。在介绍这些初步观察资料时,伽利略给机械效用和力学作用下了一个定义,从而,认为机械力学成为一个独立的学科有了一定的价值。 在定义这一章节中,伽利略解释到,重力是向下移动的内因和本质。他介绍说,他广泛地在这论文中引用一个概念,即力的静力矩,来证明他所分析研究的 扛杆系统的平衡问题。实际上,这种方法被认为是,在处理机械操作的实际问题上,第一个严格地应用力与运动这两个概念。 因此,以这一种通用的形式与方法,伽利略利用静态平衡条件来分析刚性物体重心的定义。从中他也推导出具体实际情况下的静态平衡的应用。 在这一章节中 ,伽利略通过分析速度来强调杠杆的运动。另外,他再一次阐述了一个静力矩的实际计算方法。经过以上的初步说明后,伽利略分别用单独的章节来分析每个机构的基本原理。 伽利略非常详细地分析了平时实际中应用最多的杠杆的操作方法,例如,杆秤。通过使用日常应用得术语,注释物体的特性(物质、形状、大小)来强调实际操作方法。通过确定静态平衡,使用静力矩来分析研究这种操作。另外,在运动与平衡之间,通过速度赋值来描述动态情况。 对于机构分析来说,用模型来研究是非常适当的,模型被认为是最早的运动学图。伽利略从现实体系,如图 1.a,抽象出基本的几何形态,如图 1.b,来进行运动研究。同样地,论文中普遍利用运动图来辅助分析研究机构。 图 1.伽利略的杠杆模型 1.a 原始体系; 1.b 运 动图。 根据图 1.b,这种平衡状态被清楚地表述出来了,公式为: F*CD=P*BC 在以上的公式中, P 是被撬物体的重力, F 是外作用力, CD 和 BC 是距杠杆支点的距离。 在绞盘这一章节中,伽利略运用了运动图,其中,他强调了轮轴和负载的作用,相当于一个杠杆,如图 2 所示。当他进行了不同的等效平衡分析后,他用一个简单直接的方式获得了这台机器的效率和操作性能。实际上,他也通过作图大概讲述了提高系统效率的一条路线。如图 2 所示,一个物体通过适当的布置经过点 F、 L、 X, 这被认为是现代皮带传动的基本原理。这 种新的解决办法被认为是设计成功的一个例子,它能从实体模型中抽象出来进行分析。 nts 图 2 伽利略研究和改善的绞盘传动 绞盘体系中使用轴和载荷之间的力学性能,它的目的是强调力学在实际应用中的可行性,这比它提高的机械效率更加有用。作为这篇论文工程学的目的,这一方面又被再一次充分地解释。 在滑轮这一章节中,伽利略介绍了杠杆的第二种类型的基本原理和分析过程,即负载位于支点和作用力之间。随后,他分析这种系统的力学和操作过程,并且强调这是一个等效杠杆系统。伽利略用运动图介绍了滑轮,他指出它作为连续的操作杆的实际的效用,而 不是使用一个小的力来提升重物的优势。这种等距杠杆有着相等的杠杆臂,即滑轮半径。然后,他承认这种机器的设计目标是使操作起来更加容易。另外,伽利略表示,在机械设计中通过增加滑轮的倍数,并在滑轮组上适当地加载物体,从这种机构中可以获得更加有效率的机器,这就产生了复滑轮的设计。因此,通过一个双杠杆方案,一个滑轮体系能建立如图 3 所示的图,说得更精确些,要拉起电梯却只要其电梯重力一半的作用力。 图 3 通过使用图 3.b 双杠杆模型来分析图 3.a 的复滑车 通过这种方法的概括,伽利略示范了怎样设计和操作一个倍数滑轮体系,这个倍数滑轮体系被认为是一个杠杆同若干个杠杆并行操作的体系。这是杠杆体系中偶数滑轮组的一个例子。对于奇数的滑轮体系,伽利略也得到了一个滑车和它等效杠杆体系运动图。为此,他注意到这种结论能在以前的例子中同样地得出。 在螺旋这一章节中,伽利略以谈论螺旋的设计意义开始,因为螺旋在许多机器中有着不同的实际应用。为了解释螺旋的这种实际操作效率,伽利略经过一个特殊的处理,引用有角杠杆,在斜面上,利用刚体的动力学来分析。另外,除重力以外当所有的作用力都被忽视 时,他简述了在斜面上刚体动力学的基本原理。因而,与 Pappus 的错误尝试相比,他以这种形式获得了一个正确的答案,并且也被 Del Monte.所接受。实际上在那个时候,这个课题还被许多人忙于研究,并且有一些人找到了正确的方法。例如,在 1608 年, Simon Stevin 成功地解决了斜面永恒运动不可能性的这一个问题。 nts如图 4.b 通过分析斜面交角杠杆 ABF 的平衡状态,伽利略解释了螺旋的研究过程,其实这也与图 4.a 所示的 FH 斜面是等效的。 图 4 斜面研究 (a)模型; (b)等效交角杠杆; (c)现代杠杆微积分图。 如图 4 所示,沿着斜面的方向,已知角 a,利用平衡状态,则可以得出以下公式: Pcos=F 但是根据如图 4.b 所示几何形态得: cos=BK/BF 因此,在图 4 中,考虑到 BF=AB,即杠杆的半径,参考现代的图像,图 4.c 得: P*AB=F*BK 以上杠杆的平衡状态是以静力矩平衡状态的形式表现出来的。 然后,伽利略阐明了像圆柱体的斜面螺旋。论文最后,他解释了在斜面上的刚体位移必须被分解为垂向分量,因为它起因于刚体重力的作用。 在关于阿基米德螺旋泵的这一章节中,伽利略描述了泵的设计和它的实际操作过程。这是螺旋设计和等效斜面应用于实践的一个杰出例子,他认为这一设计不仅了不起而且非常令人惊奇。这个设计给予了他证明实践应用能成功的机会,沿着给出的固定螺杆泵的坡度,相当于一个等效斜面,如图 5,允许水沿着重力方向和沿着螺旋轴上升的方向流动。 图 5 螺旋泵的等效斜面和设计 在这篇论文中 ,伽利略对冲力也作了简略的讲述。当时,冲力的实际应用,还是一个未解决的问题,。他通过动力学性能来处理这个问题,他认为其力学性能就是物体的速度和它所受力大小以及 它的位移。伽利略解释到刚体产生位移是由于冲力的作用,冲力产生的能量和刚体吸 收能量产生的位移之间存在一个平衡状态,并可以用公式表示 F*v* t=R*s 其中 F 表示作用在刚体上的作用力, R 表示作用在刚体上的反作用力, v 表示 F 作用在刚体上的瞬时速度, t 表示一段很小的时间, s 表示产生的位移。 伽利略用另外的问题结束了论文,这些问题同样可以用论文中已经分析过的方法解决。 第三章 .Le Mecaniche 的重要现代意义 Le Mecaniche 这篇论文有着重要的意义,不仅是因为历史的原因,而且也由于它在学术上nts建立了一个恰当的观点,它不平常的观察角度。它是一本教科书,是机械分类的开始,它使机械设计和实际操作公式化了。 谈到历史意义,伽利略的著作是内容丰富的文献(因为篇幅所限,这里不在叙述)通过这本文献能找到 2的注解。最近,技术综论也提到了,例如 11 作为课堂上的教科书,这篇论文被确认为存在 4 种手稿的简略本和 14 种手稿的长版本。简略版本似乎是这篇论文的第一个版本。由于在语言上有小的细节不同,它就有了许多不同的稿件,所以,这篇论文被认为已经具备 课堂教学的条件。虽然伽利略确实是其论文的创作者,但实际上,这种情况的出现跟伽利略本人没有什么关系。伽利略提出了有关机械力学的课程,但这跟 1593 年到 1604 年亚里士多德和欧几里德的工作也是有关系的,后来 Pisa 大学和Padua 大学也分离出了机械力学的课程。论文可以作为课堂上的教科书,也因为论文中图表简明严格的风格,可以应用到分析统计学问题,描述一个模型 ,用一个公式来解决问题和更进一步地讨论解释实际应用问题。这种教学观点很重要,伽利略依靠和利用早期运动学上的图表,他得出了一些关于实际机器的结论,强调了主要的设 计参数并使参数适当地公式化了。 遵循这种已经建立的经典的传统方法和 Del Monte 的主要工作,由于机械力学实际应用的多样性,伽利略为了推导出一个统一的机械杠杆原理,他研究了许多机器的基本原理,其基本原理作为当时机械的分类方法。事实上,当他研究基本机构的操作时,他发现了一种新的机构,即就是,把以上提到的皮带传动当做提高滑轮体系效率的方法。因此,伽利略的这种不同寻常的方法被认为是考虑了一种新的基理来研究机构,利用这种机理可以设计并使用许多其他的机构。当 Del Monte 采用阿基米德的方法重新研究机构时,伽利略 对基本机构采用了传统的分类法。另外,他在研究中提出的实践工程学的观点,不仅直接地培养了人才而且也认人更加关心实际问题。 伽利略抱着一种得到分析公式的明确目的,对机构的运转做分析研究。在这篇论文中,不仅写入了当时常规中没有的数学表达式,而且,也加入了相关问题的图像和解决问题的图像,并加了相关的注释。数学表达是如此地明确的和简明的,以至它们能容易地被理解,例如,像论文中用图 1,图 2,图 3 所做的分析一样。伽利略的公式化是论文中所描述的一个方法,它直接指向模拟问题,能被用了分析和设计机器等,例如,用图 4 的图像来研究 螺杆泵。 第四章 .总 结 Le Mecaniche 这篇论文被认为是关于 TMM 的第一本学术教科书, 1593 年到 1604 年,伽利略按照它的理论分析和实践观点,研究了一个精确的机械力学系统。它的重要性是,事实上也是第一个成功地获得了机械力学的地位,并在这一领域成为了一个独立的学科,这就是典型的现代 TMM。 nts附录 外文文献原文 Early TMM in Le Mecaniche by Galileo Galilei in 1593 Marco Ceccarellia, Abstract In this paper the work on the Theory of Machines by Galilei is reviewed and interpreted. The small treatise Le Mecaniche can be considered of fundamental significance in the History of Mechanical Engineering since it was written for a first academic course on TMM, and it used modern concepts. Keywords: History of Mechanical Engineering; Mechanics of machinery; TMM; History of TMM; Galileo Galilei Article Outline 1. Introduction 2. A review of Le Mecaniche by Galileo Galilei 3. Modern significance of Le Mecaniche 4. Conclusions 1.Introduction Since early Renaissance, the subjects of Mechanical Engineering have attracted more and more interest both for practical applications and from a theoretical viewpoint in resp onse to an increase of societal needs. Several studies and designs of machinery were developed during Renaissance, but the matter did not get the dignity of a discipline, although it achieved significant advances. In fact, at the universities no entities were devoted to the practical aspects of engineering. The subjects of mechanics were taught as an application of mathematics. Some unsuccessful attempts were made to establish a specific program for engineers, even outside the frame of the universities. The first successful independent academic course on Mechanics of Machinery was given by Galileo Galilei (15641642) at the prestigious University of Padua in 15971598. In this he used the short treatise Le Mecaniche *1+ and.*2+ (it can be translated as Mechanical Matters) that seems to have been written in 1593.Usually Le Mecaniche is considered as a minor work of Galileis since it is regarded as a preliminary step in the development of the masterpieces of Galilei in the field of experimental mechanics. In Le Mecaniche, Galilei approaches the analysis of fundamental machines for lifting weights, namely lever (lieva), capstan (argano), pulleys (taglie), and screw (vite). A rigorous analysis of these machines is performed by Galilei by examining the physical phenomena of the machinerys operation and by using suitable models derived from early forms of descriptive geometry and kinematics. In addition, practical concerns are mentioned throughout the treatise so that it can be considered to also have been useful for practical engineering and design purposes. All the analyzed machines are treated by referring to suitable models that are studied by Galilei as lever applications. Thus, the mechanics of levers are considered as fundamental. This is in agreement with the classical approach by Archimedes in Mechanical Problems *3+, which Galilei refers to explicitly. Galilei mentions also the work by Pappus Alexandrinus 4. Galilei seems to have been strongly inspired by Guidobaldo Del Monte 5, but also by the works of others such as, ntsfor example, Alessandro Piccolomini 6 Francesco Maurolico (14941575) 7, Federico Commandino (15091575) 3 and 4, Giovan Battista Benedetti 8 and Girolamo Cardano (15011576) 9, who at that time were discussing the problem of determining the center of gravity in rigid bodies and were influenced by the classical works of Aristotle, Pappus Alexandrinus, and Archimedes. In Le Mecaniche, Galilei explains how the results of a theoretical analysis for determining the center of gravity of a rigid body can be used for the study of practical problems for engineering purposes. Indeed, this is one of the aspects that make Le Mecaniche a milestone in both the academic world and in the development of modern engineering. The pioneer work Mechanicorum Liber *5+, by Guidobaldo Del Monte can be also be considered as fundamental for the recognition of the importance of the mechanics of machines. Indeed, Galilei seems to have been strongly inspired by both Del Montes work and the friendly contacts that he had with Del Monte. In this paper, the treatise Le Mecaniche is reviewed with a modern interpretation, and its significance is discussed both in terms of historical and technical viewpoints. 2. A review of Le Mecaniche by Galileo Galilei The small treatise is organized in small chapters, namely, an Introduction on Mechanics and Its Instruments, Definitions, Advertisements, On Steelyard and Lever, On Capstan, On Pulleys, On Screw, and On the Impulse of a Force. Galilei starts the treatise with a strong criticism of the idea that anything can be done by machines (in contradiction with attempts at the time to create perpetual motion machines). Nevertheless, he stresses that machines can be very useful powerful means when their operations are fully understood. Thus, he introduces the task of lifting weights with its mechanical character that is related to the action of forces, displacements, and velocity. Indeed, he clearly refers to the notion of mechanical power by stressing that larger forces can work with smaller velocity and vice versa. The engineering vision of Galilei is further expressed by referring to a moving force as an actuator that can be of any nature, besides a human operator. In doing these preliminary observations, Galilei defines the utility of machines and their mechanical purposes, thereby giving the mechanics of machinery the dignity of being considered as special discipline. In the section for Definitions, Galilei explains the notion of gravity as the predisposition of moving downwards by nature. In addition, he introduces the notion of the static moment of a force that he uses extensively in the treatise to prove the equilibrium of the levers he analyzed. Indeed, this approach can be considered as the first rigorous application of the concept of a moment of a force in dealing with the operation of machines. Thus, by using the conditions for static equilibrium Galilei analyzes the determination of the center of gravity of rigid bodies in a general form, from which he deduces also applications for specific practical situations. In the section for Advertisements, Galilei stresses the motion aspects of the levers operation by emphasizing the velocity. In addition, he remarks once more on the practical calculation of the static moment of a force. After the above-mentioned preliminaries, Galilei uses individual sections for the analysis of each fundamental machine. Galilei analyzes in great detail the operation of lever by referring to its most frequent application, i.e., the steelyard (stadera). The practical approach is emphasized with comments on the construction characteristics (materials, shape, and sizes), using the nomenclature of daily ntsapplications. The operation is analyzed by using the notion of static moment for the determination of the static equilibrium. In addition, dynamic aspects are described by giving an evaluation of the velocity during the motion towards the equilibrium. It is of great relevance that the model used for the study can be considered as a first early kinematic diagram for machine analysis. Galilei abstracts from the real system, Fig. 1(a), the essential geometry for the motion study, Fig. 1(b). Similarly, kinematic diagrams are used throughout the treatise to aid in analyzing the machines. Fig. 1.The lever model by Galilei 1: (a) a natural description; (b) a kinematic diagram. Referring to Fig. 1(b), the equilibrium is clearly described and it can be formulated as F*CD=P*BC (1) in which P is the weight of the lifted body, F is the applied force, CD and BC are lever distances. In the section for Capstan, Galilei refers to a kinematic diagram in which he emphasizes the function of an axle with a load as equivalent to a lever, Fig. 2. Then, after an explanation of the equivalence, he obtains the efficiency and operation characteristics of the machine in a straightforward way. Indeed, he also outlines a way to increase the efficiency of the system by illustrating a solution that can be considered as the principle for modern belt transmissions, when one observes a suitable arrangement through points F, L, and X in Fig. 2. This new solution is presented as one example of design achievements than can be obtained from the proposed analysis. Fig. 2. Study and improvements of capstan transmission by Galilei 1. The mechanics of an axle with load is applied to the capstan system with the aim of emphasizing the practical usefulness more than mechanical efficiency. This aspect can be understood once more as an engineering aim of this treatise. In the section on Pulleys, Galilei introduces the concept and analysis of a lever of the second type, with the load between the fulcrum and applied force. Then, he analyzes the mechanics and operation by stressing the equivalence with a lever mechanism. A pulley is described and a kinematic diagram is introduced. Galilei points out its practical utility as a continuously operating lever and not for its advantage of lifting weights using a small force. In fact, the equivalent lever has the lever arms of equal lengths, which is the pulley radius. Then, he recognizes the design ntsgoal of these machines that is the need for easy operation. In addition, Galilei shows that from this machine more efficient machines can be obtained by properly combining several of them in a multiple mechanical design, which result in the design of tackles. Thus, by referring to a double lever scheme, a pulley system can be conceived as in Fig. 3 with an applied force that is half of the lifted weight. Fig. 3. Analysis of a tackle in (a) by using a double lever model in (b) 1. By generalizing the procedure, Galilei shows how to design and operate a multiple pulley system, referred to as a lever system with several levers operating in parallel. This is the case for an even number of pulleys. For odd number of pulleys, Galilei shows a kinematic diagram of a tackle and its equivalent lever system too. Therefore, he observes how the results can be obtained similarly to the previous case. In the section on Screw, Galilei starts by remarking on the significance of a screw design in many machines for different applications. In order to explain the operational efficiency of a screw, Galilei makes use of the mechanics of a body on an inclined plane by way of a novel approach that refers to angular levers. In addition, he outlines the fundamentals of the mechanics of a body on an inclined plane, when all actions are neglected except for the weight. Thus, he obtains a correct solution that he compares with a wrong attempt made by Pappus in a form that was accepted also by Del Monte. Indeed, the subject was addressed by many others at that time, and some took the correct approach. For example in 1608 Simon Stevin approached successfully the problem of an inclined plane in 10 with the aim of also proving the impossibility of perpetual motion. Galilei explains the operation of a screw by analyzing the equilibrium of an angular lever ABF through the scheme of Fig. 4(b) that is equivalent to the inclined plane FH of Fig. 4(a). Fig. 4. Study of the inclined plane: (a) a model 1; (b) an equivalent angular lever 1; (c) a modern lever scheme for calculus. Referring to the scheme of Fig. 4(a), by using the equilibrium along the direction of the inclined ntsplane, given by angle , one can formulate Pcos=F (2) But from the geometry of the system in Fig. 4(b) cos=BK/BF (3) Thus, considering BF = AB as the radius of the equivalent circular lever in Fig. 4(b) and referring to a modern representation through the scheme in Fig. 4(c), it yields PAB=FBK (4) which is the lever equilibrium in the form of a balance of the static moment. Then Galilei explains the screw as an inclined plane that is wrapped on a cylindrical body. Finally, he explains that a displacement of a rigid body on an inclined plane must be evaluated by referring to its vertical component, since it is due to the action of weight. In the section on Archimedes screw pump, Galilei describes the pump design and its operation as a brilliant application of the design of a screw and its equivalent inclined plane, as he recognizes the design as not only marvelous, but wonderful (non solo
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:1593年时伽利略的Le•Mecaniche中的早期TMM
链接地址:https://www.renrendoc.com/p-553255.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!