




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2函数的表示法(一)学习目标1.了解函数的三种表示法及各自的优缺点.2.掌握求函数解析式的常见方法.3.尝试作图并从图像上获取有用的信息知识点一解析法思考一次函数如何表示?梳理一个函数的对应关系可以用自变量的解析表达式(简称解析式)表示出来,这种方法称为解析法知识点二图像法思考要知道林黛玉长什么样,你觉得一个字的描述和一张二寸照片哪个更直观?梳理用图像把两个变量间的函数关系表示出来的方法,称为图像法知识点三列表法思考在街头随机找100人,请他们依次随意地写一个数字设找的人序号为x,x1,2,3,100.第x个人写下的数字为y,则x与y之间是不是函数关系?能否用解析式表示?梳理用表格的形式表示两个变量之间函数关系的方法,称为列表法函数三种表示法的优缺点:类型一解析式的求法例1根据下列条件,求f(x)的解析式(1)f(f(x)2x1,其中f(x)为一次函数;(2)f(x)x2;(3)f(x)2f(x)x22x.反思与感悟(1)如果已知函数类型,可以用待定系数法(2)如果已知f(g(x)的表达式,想求f(x)的解析式,可以设 tg(x),然后把f(g(x)中每一个x都换成t的表达式(3)如果条件是一个关于f(x)、f(x)的方程,我们可以用x的任意性进行赋值如把每一个x换成x,其目的是再得到一个关于f(x)、f(x)的方程,然后消元消去f(x)跟踪训练1根据下列条件,求f(x)的解析式(1)f(x)是一次函数,且满足3f(x1)f(x)2x9;(2)f(x1)x24x1;(3)2f()f(x)x(x0)类型二图像的画法及应用例2试画出函数y的图像反思与感悟描点法作函数图像的三个关注点(1)画出函数图像时首先应关注函数的定义域,即在定义域内作图(2)图像是实线或实点,定义域外的部分有时可用虚线来衬托整个图像(3)要标出某些关键点,例如图像的顶点、端点、与坐标轴的交点等要分清这些关键点是实心点还是空心点跟踪训练2作出下列函数的图像并求出其值域(1)y2x1,x0,2;(2)y,x2,);(3)yx22x,x2,2例3已知f(x)的图像如图所示,则f(x)的定义域为_,值域为_反思与感悟函数图像很直观,在解题过程中常用来帮助理解问题的数学本质,寻求最优解跟踪训练3函数f(x)x24x3(x0)的图像与ym有两个交点,求实数m的取值范围类型三列表法及函数表示法的选择例4下表是某校高一(1)班三名同学在高一学年度六次数学测试的成绩及班级平均分表. 测试序号成绩姓名第1次第2次第3次第4次第5次第6次王伟988791928895张城907688758680赵磊686573727582班级平均分88.278.385.480.375.782.6(1)选择合适的方法表示测试序号与成绩的关系;(2)根据表示出来的函数关系对这三位同学的学习情况进行分析反思与感悟函数的三种表示方法都有各自的优点,有些函数能用三种方法表示,有些只能用其中的一种来表示跟踪训练4若函数f(x)如下表所示:x0123f(x)3210则f(f(1)_.1已知函数f(x)由下表给出,则f(f(3)等于()x1234f(x)3241A.1 B2 C3 D42如果二次函数的图像开口向上且关于直线x1对称,且过点(0,0),则此二次函数的解析式可以是()Af(x)x21Bf(x)(x1)21Cf(x)(x1)21Df(x)(x1)213已知正方形的边长为x,它的外接圆的半径为y,则y关于x的解析式为()Ayx ByxCyx Dyx4某同学从家里到学校,为了不迟到,先跑步,跑累了再走余下的路,设在途中花的时间为t,离开家里的路程为d,下面图形中,能反映该同学的行程的是()5画出y2x24x3,x(0,3的图像,并求出y的最大值,最小值1如何求函数的解析式求函数的解析式的关键是理解对应关系f的本质与特点(对应关系就是对自变量进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意有的函数要注明定义域主要方法有:待定系数法、换元法、解方程组法(消元法)2如何作函数的图像一般地,作函数图像主要有三步:列表、描点、连线作图像时一般应先确定函数的定义域,再在定义域内化简函数解析式,再根据所列表中的点描出图像,画图时要注意一些关键点,如与坐标轴的交点,端点的虚、实问题等3如何用函数图像常借助函数图像研究定义域、值域、函数变化趋势及两个函数图像交点问题答案精析问题导学知识点一思考ykxb(k0)知识点二思考一张二寸照片知识点三思考对于任意一个人的序号x,都有一个他写的数字y与之对应,故x,y之间是函数关系,但因为人是随机找的,数字是随意写的,故难以用解析式表示这时可以制作一个表格来表示x的值与y的值之间的对应关系题型探究例1解(1)由题意,设f(x)axb(a0),f(f(x)af(x)ba(axb)ba2xabb2x1,由恒等式性质,得或所求函数解析式为f(x)x1或f(x)x1.(2)f(x)x2(x)22,f(x)x22.又x0,x2或x2,f(x)中的x与f(x)中的x取值范围相同,f(x)x22,x(,22,)(3)f(x)2f(x)x22x,将x换成x,得f(x)2f(x)x22x,联立以上两式消去f(x),得3f(x)x26x,f(x)x22x.跟踪训练1解(1)由题意,设f(x)axb(a0),3f(x1)f(x)2x9,3a(x1)3baxb2x9,即2ax3a2b2x9,由恒等式性质,得a1,b3.所求函数解析式为f(x)x3.(2)设x1t,则xt1,f(t)(t1)24(t1)1,即f(t)t22t2.所求函数解析式为f(x)x22x2.(3)f(x)2f()x,将原式中的x与互换,得f()2f(x).于是得关于f(x)的方程组解得f(x)(x0)例2解由1x20解得函数定义域为1,1当x1时,y有最小值0.当x0时,y有最大值1.x时,y.利用以上五点描点连线,即得函数y的图像如下:跟踪训练2解(1)列表:x012y12345当x0,2时,图像是直线的一部分,观察图像可知,其值域为1,5(2)列表:x2345y1当x2,)时,图像是反比例函数y的一部分,观察图像可知其值域为(0,1(3)列表:x21012y01038图像是抛物线yx22x在2x2之间的部分由图可得函数的值域是1,8例32,45,84,3解析函数的定义域对应图像上所有点横坐标的取值集合,值域对应纵坐标的取值集合跟踪训练3解f(x)x24x3(x0)图像如图,f(x)与直线ym图像有2个不同交点,由图易知1m3.例4解(1)不能用解析法表示,用图像法表示为宜在同一个坐标系内画出这四个函数的图像如下:(2)王伟同学的数学成绩始终高于班级平均水平,学习情况比较稳定而且成绩优秀张城同学的数学成绩不稳定,总是在班级平均水平上下波动,而且波动幅度较大赵磊同学的数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 消保权益知识培训课件
- 2025沧州海兴县招聘社区工作者27名考前自测高频考点模拟试题及答案详解(新)
- 2025江西吉安市井冈山大学招聘177人模拟试卷及答案详解(有一套)
- 2025福建厦门红宝石投资管理有限公司社会招聘工程管理岗1人模拟试卷及答案详解(名师系列)
- 2025河南郑州工商学院招聘67人模拟试卷参考答案详解
- 2025湖南澄迈县农业技术推广中心招聘见习生7人模拟试卷有答案详解
- Brand KPIs for clean beauty Terral Natural in Brazil-外文版培训课件(2025.9)
- 2025贵州独山县事业单位引进急需紧缺专业人才100人考前自测高频考点模拟试题及参考答案详解一套
- 涂料课件教学
- 2025福建福州经济技术开发区机关事务服务中心招聘编外聘用人员1人模拟试卷及答案详解(全优)
- 【MOOC】《研究生英语科技论文写作》(北京科技大学)中国大学MOOC慕课答案
- 高考英语读后续写高分讲义:万能语料之心理描写
- 《以核心价值体系为引领推进陕西文化强省建设》课程讲义
- 伟大的改革开放 全市获奖
- 人教版小学三年级数学上册几分之一课件16888
- 【孤独症学生心理特点与教育对策(论文)】
- 普通昆虫学形态学部分
- 人文关怀与人文护理
- 湿疮中医护理查房严重湿疹
- GB/T 35112-2017农业用腐殖酸和黄腐酸原料制品分类
- 小学语文人教四年级上册第四单元神奇的神话故事
评论
0/150
提交评论