人教A版选修22 1.4生活中的优化问题举例 学案.doc_第1页
人教A版选修22 1.4生活中的优化问题举例 学案.doc_第2页
人教A版选修22 1.4生活中的优化问题举例 学案.doc_第3页
人教A版选修22 1.4生活中的优化问题举例 学案.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章导数及其应用1.4生活中的优化问题举例 - 学 案一、学习目标1了解导数在解决实际问题中的作用2掌握利用导数解决简单的实际生活中的优化问题二、自主学习1生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题2利用导数解决优化问题的实质是求函数最值3解决优化问题的基本思路是上述解决优化问题的过程是一个典型的数学建模过程三、合作探究要点一用料最省问题例1有甲、乙两个工厂,甲厂位于一直线河岸的岸边a处,乙厂与甲厂在河的同侧,乙厂位于离河岸40千米的b处,乙厂到河岸的垂足d与a相距50千米,两厂要在此岸边合建一个供水站c,从供水站到甲厂和乙厂的水管费用分别为每千米3a元和5a元,问供水站c建在岸边何处才能使水管费用最省?解如图,由题意知,只有点c位于线段ad上某一适当位置时,才能使总费用最省,设点c距点d为x km,则bc,又设总的水管费用为y元,依题意有y3a(50x)5a(0x50)y3a.令y0,解得x30,(x30舍去)在(0,50)上,y只有一个极值点,根据问题的实际意义,函数在x30处取得最小值,此时ac50x20 (km)供水站建在a、d之间距甲厂20 km处,可使水管费用最省规律方法用料最省问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象,正确书写函数表达式,准确求导,结合实际作答跟踪演练1一艘轮船在航行中每小时的燃料费和它的速度的立方成正比已知速度为每小时10海里时,燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问轮船的速度是多少时,航行1海里所需的费用总和最小?解设速度为每小时v海里的燃料费是每小时p元,那么由题设的比例关系得pkv3,其中k为比例系数(k0),它可以由v10,p6求得,即k0.006,于是有p0.006v3.又设当船的速度为每小时v海里时,航行1海里所需的总费用为q元,那么每小时所需的总费用是0.006v396(元),而航行1海里所需时间为小时,所以,航行1海里的总费用为:q(0.006v396)0.006v2.q0.012v(v38 000),令q0,解得v20.当v20时,q20时,q0,当v20时,q取得最小值,即速度为20海里/时时,航行1海里所需费用总和最小要点二面积、容积的最值问题例2如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空白的宽度为5 cm.怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?解设广告的高和宽分别为x cm,y cm,则每栏的高和宽分别为x20 cm, cm,其中x20,y25.两栏面积之和为2(x20)18 000,由此得y25.广告的面积sxyx25x,s2525.令s0得x140,令s0得20x0);固定部分为a元(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?解(1)依题意汽车从甲地匀速行驶到乙地所用的时间为,全程运输成本为yabv2s,所求函数及其定义域为ys,v(0,c(2)由题意s、a、b、v均为正数ys0得v .但v(0,c若c,则当v 时,全程运输成本y最小;若 c,则v(0,c,此时yc时,行驶速度vc.规律方法正确理解题意,建立数学模型,利用导数求解是解题的主要思路另外需注意:合理选择变量,正确给出函数关系式与实际问题相联系必要时注意分类讨论思想的应用跟踪演练3已知某商品生产成本c与产量q的函数关系式为c1004q,价格p与产量q的函数关系式为p25q.求产量q为何值时,利润l最大?解收入rqpq25qq2,利润lrc(1004q)q221q100(0q200)lq21令l0,即q210,求得唯一的极值点q84.所以产量为84时,利润l最大四、自主小测1炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x小时,原油温度(单位:)为f(x)x3x28(0x5),那么,原油温度的瞬时变化率的最小值是()a8 b c1 d82设底为等边三角形的直三棱柱的体积为v,那么其表面积最小时底面边长为()a. b c d23在边长为60 cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?4统计表明:某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/时)的函数解析式可以表示为yx3x8(00)s(x34v)令s0,得x.3解设箱底边长为x cm,则箱高h cm,箱子容积v(x)x2h(0x60)v(x)60xx2令v(x)60xx20,解得x0(舍去)或x40,并求得v(40)16 000.由题意知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值答当x40 cm时,箱子容积最大,最大容积是16 000 cm3.4解当速度为x千米/时时,汽车从甲地到乙地行驶了小时,设耗油量为h(x)升,依题意得h(x)x2(0x120),h(x)(0x120)令h(x)0,得x80.因为x(0,8

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论