已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学习目标1.回顾梳理向量的有关概念,进一步体会向量的有关概念的特征.2.系统整理向量线性运算、数量积运算及相应的运算律和运算性质.3.体会应用向量解决问题的基本思想和基本方法.4.进一步理解向量的“工具”性作用1向量的运算:设a(x1,y1),b(x2,y2)向量运算法则(或几何意义)坐标运算向量的线性运算加法ab_减法ab_数乘(1)|a|a|;(2)当0时,a的方向与a的方向_;当0时,a的方向与a的方向_;当0时,a0a_向量的数量积运算ab|a|b|cos (为a与b的夹角)规定0a0,数量积的几何意义是a的模与b在a方向上的投影的积ab_2.两个定理(1)平面向量基本定理定理:如果e1,e2是同一平面内的两个_向量,那么对于这一平面内的_向量a,_实数1,2,使a_.基底:把_的向量e1,e2叫做表示这一平面内_向量的一组基底(2)向量共线定理向量a(a0)与b共线,当且仅当有唯一一个实数,使_3向量的平行与垂直a,b为非零向量,设a(x1,y1),b(x2,y2),ab有唯一实数使得_x1y2x2y10ab类型一向量的线性运算例1如图所示,在abc中,p是bn上的一点,若m,则实数m的值为_反思与感悟向量共线定理和平面向量基本定理是进行向量合成与分解的核心,是向量线性运算的关键所在,常应用它们解决平面几何中的共线、共点问题跟踪训练1在abc中,e为线段ac的中点,试问在线段ac上是否存在一点d,使得,若存在,说明d点位置;若不存在,说明理由类型二向量的数量积运算例2已知a(cos ,sin ),b(cos ,sin ),且|kab|akb|(k0)(1)用k表示数量积ab;(2)求ab的最小值,并求出此时a与b的夹角的大小反思与感悟数量积运算是向量运算的核心,利用向量数量积可以解决以下问题:(1)设a(x1,y1),b(x2,y2),abx1y2x2y10,abx1x2y1y20.(2)求向量的夹角和模的问题设a(x1,y1),则|a|.两向量夹角的余弦(0)cos .跟踪训练2已知向量(3,4),(6,3),(5m,(3m)(1)若点a,b,c能构成三角形,求实数m应满足的条件;(2)若abc为直角三角形,且a为直角,求实数m的值类型三向量坐标法在平面几何中的应用例3已知在等腰abc中,bb,cc是两腰上的中线,且bbcc,求顶角a的余弦值的大小反思与感悟把几何图形放到适当的坐标系中,就赋予了有关点与向量具体的坐标,这样就能进行相应的代数运算和向量运算,从而解决问题这样的解题方法具有普遍性跟踪训练3如图,半径为的扇形aob的圆心角为120,点c在上,且cob30,若,则_.1在菱形abcd中,若ac2,则_.2设四边形abcd为平行四边形,|6,|4.若点m,n满足3,2,则_.3已知向量a(2,3),b(1,2),若ma4b与a2b共线,则m的值为_4若向量(1,3),|,0,则|_.5平面向量a(,1),b,若存在不同时为0的实数k和t,使xa(t23)b,ykatb,且xy,试求函数关系式kf(t)1由于向量有几何法和坐标法两种表示方法,它的运算也因为这两种不同的表示方法而有两种方式,因此向量问题的解决,理论上讲总共有两个途径,即基于几何表示的几何法和基于坐标表示的代数法,在具体做题时要善于从不同的角度考虑问题2向量是一个有“形”的几何量,因此,在研究向量的有关问题时,一定要结合图形进行分析判断求解,这是研究平面向量最重要的方法与技巧答案精析知识梳理1(x1x2,y1y2)(x1x2,y1y2)相同相反(x1,y1)x1x2y1y22(1)不共线任意有且只有一对1e12e2不共线所有(2)ba3ba(a0)ab0x1x2y1y20题型探究例1跟踪训练1解假设存在d点,使得.().所以当点d为ac的三等分点时,.例2解(1)由|kab|akb|,得(kab)23(akb)2,k2a22kabb23a26kab3k2b2.(k23)a28kab(13k2)b20.|a|1,|b|1,k238kab13k20,ab.(2)ab(k)由函数的单调性可知,f(k)(k)在(0,1上单调递减,在1,)上单调递增,当k1时,f(k)minf(1)(11),此时a与b的夹角的余弦值cos ,60.跟踪训练2解(1)若点a,b,c能构成三角形,则这三点不共线,(3,4),(6,3),(5m,(3m),(3,1),(m1,m),与不平行,3mm1,解得m,当实数m时满足条件(2)若abc为直角三角形,且a为直角,则,而(3,1),(2m,1m),3(2m)(1m)0,解得m.例3解建立如图所示的平面直角坐标系,设a(0,a),c(c,0),则b(c,0),(0,a),(c,a),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 双方达成协议解除合同
- 卧室地板租房合同范本
- 共同使用借款合同范本
- 合伙贷款协议合同范本
- 2026年一级注册建筑师之建筑经济、施工与设计业务管理考试题库300道含答案(考试直接用)
- 古董瓷器售卖合同范本
- 合同权利无偿转让协议
- 北京道路施工合同范本
- 农村厢房出售合同范本
- 厨房商品直销合同范本
- 测绘项目投标技术文件范例
- JAC300变频器使用说明书
- 化学运行班长主值岗位试题
- 《高分子与食品安全》
- MBA《创新管理》课件
- 少给父母添麻烦-课件
- 演讲与口才第二章口语表达课件
- 6078三菱帕杰罗v87v97v93维修手册原厂
- 创伤性凝血病课件
- (完整)公共卫生基本知识考试题题库及答案
- 装修材料燃烧性能等级表
评论
0/150
提交评论