导学案61平均数.doc_第1页
导学案61平均数.doc_第2页
导学案61平均数.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

会宁县华峰初中高效课堂 知识改变命运,智慧书写华峰初中 数 学科导学案年级: 八年级 主备人:何占荣 审核人:数学教研室 学生姓名: 编号: 使用日期:2014年 月课题6.1平均数课型新授教材分析目标1、掌握算术平均数,加权平均数的概念2、会求一组数据的算术平均数和加权平均数,并体会权的差异对结果的影响3、理解算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题重点1、算术平均数、加权平均数的概念2、算术平均数和加权平均数的联系和区别难点求一组数据的算术平均数和加权平均数并体会权的差异对结果的影响,认识到权的重要性教学过程预习案某中学举行歌咏比赛,六名评委给某选手打分如下:78分,77分,82分,95分,83分,75分,去掉一个最高分,去掉一个最低分,再统计他的平均分作为该歌手的最后得分 【点拨】根据规则,选手的得分是:(78778283)32080(分)除了用平均数来衡量选手的得分外,还有其他的方法,本节课我们就进一步学习一下探究案1 平均数的概念 算术平均数的概念:一般地,对于n个数x1,x2,xn,我们把(x1x2xn)叫做这n个数的算术平均数,简称平均数,记为. 加权平均数的概念:在n个数据中,如果x1出现f1次,x2出现f2次xk出现fk次(这里f1f2fk=n),那么这n个数据的平均数(x1f1x2f2xkfk)就叫做这n个数据的加权平均数其中f1,f2,fk叫做权 对加权平均数的理解,应注意以下两个方面: (1)“权”含有所占分量轻重之意,fk越大,表明fk这个数据越多,“权”就越重 (2)当各数据的权均为l时,加权平均数即为算术平均数算术平均数实质上是加权平均数的一种特殊情况拓展 (1)算术平均数所反映的是一组数据的平均程度(2)算术平均数与加权平均数的区别:算术平均数与加权平均数是既有联系又有区别的,一般而言,求一组数据的算术平均数,必须是该组数据中各数的“重要性”相当(“权”相等),且重复数据较少;求一组数据的加权平均数有两种情况:一是该组数据中各数据重要程度不一,所占比例不一样,二是该组数据中有多个数据反复多次出现2 用部分估计总体 当一组数据的个数非常多,或很难获得全部数据时,可以从这些数据中抽出部分个体作为样本进行分析、统计,由此估计总体的特征或信息如养鱼池里大约有多少条鱼,这些鱼大约有多重,一棵苹果树大约结多少千克苹果等,这些问题都可以用上述方法解决,因此用部分估计总体是我们解决实际问题常用的方法拓展 所抽取的样本容量越大,估算的总体的平均数越准确读45页正文第二3.课堂检测基本概念题1、 有5个10,3个9,4个8,则平均数是多少?(精确到01)基础知识应用题 2、某人打靶,前3次每次中靶环数为9环,后7次每次中靶环数为7环,那么估计一下此人10次打靶的平均数应大于8环还是小于8环 我的收获:训练案综合应用题1.某公司欲招聘一名推销员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如下表:(百分制)候选人面试笔试甲9087乙8494 (1)如果公司认为面试和笔试成绩同等重要,依据平均成绩谁将被录取? (2)如果公司认为作为推销员,面试成绩应该比笔试成绩更重要,并分别赋予它们6和4的权计算甲、乙两人各自的平均成绩,看看谁将被录取 探索与创新题2、已知两组数据x1,x2,x3,xn和y1,y2,y3,yn的平均数分别是4和18(1)若x1,x2,x3的平均数为4,y1,y2,y3,y4的平均数为18,求x1,x2,x3,y1,y2,y3,y4的平均数; (2)求一组新数据6x1,6x2,6xn的平均数;(3)求一组新数据mx1ky1,mx2ky2,mxnkyn的平均数若x1,x2,xn的平均数是,y1,y2,yn的平均数是,则有如下结论:(1)kx1,kx2,kxn的平均数是k;(2)kx1a,kx2a,kxna的平均数是ka;(3)x1y1,x2y2,xnyn的平均数是;(4)kx1ay1,kx2ay2,kxnayn的平均数是ka牢记以上结论或者掌握推导的方法,对解填空题、选择题有很大帮助体验中考 1、小明记录了今年元月份某五天的最低温度(单位:):1,2,0,1,2,这五天的最低温度的平均值是 ( ) A1 B2 C0 D1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论