导套.dwg
导套.dwg

圆形筛盖注塑模具设计【全套含CAD图纸、说明书】

收藏

资源目录
跳过导航链接。
圆形筛盖注塑模具设计【全套含CAD图纸、说明书】.zip
导套.dwg---(点击预览)
定模板-A1.dwg---(点击预览)
定位圈.dwg---(点击预览)
大齿轮-A3.dwg---(点击预览)
外文翻译(英文).doc---(点击预览)
外文翻译(中文).doc---(点击预览)
型芯轴-A3.dwg---(点击预览)
型腔-A2.dwg---(点击预览)
动模板2.dwg---(点击预览)
动模板1.dwg---(点击预览)
主轴-A3.dwg---(点击预览)
中期检查表.doc---(点击预览)
三维(Solidworks2012)
筛盖零件.png---(点击预览)
模具三维装配图.png---(点击预览)
主轴1.SLDPRT
主轴齿轮.SLDPRT
动模座板.SLDPRT
动模板1.SLDPRT
动模板2.SLDPRT
右垫块.SLDPRT
型腔.SLDPRT
型芯.SLDPRT
型芯齿轮.SLDPRT
复位杆.SLDPRT
套筒.SLDPRT
定位圈.SLDPRT
定模座板.SLDPRT
定模板.SLDPRT
导套.SLDPRT
导柱.SLDPRT
左垫块.SLDPRT
推杆固定板.SLDPRT
推板.SLDPRT
模具三维装配图.SLDASM
模具三维装配图.STEP
浇口套.SLDPRT
电机.SLDPRT
电机套筒.SLDPRT
电机支架.SLDPRT
筛盖零件.SLDPRT
衬套.SLDPRT
轴承.SLDPRT
链轮.SLDPRT
镶块.SLDPRT
主轴-A3.exb
动模板1.exb
动模板2.exb
型腔-A2.exb
型芯轴-A3.exb
大齿轮-A3.exb
定位圈.exb
定模板-A1.exb
导套.exb
压缩包内文档预览:
预览图
编号:56333800    类型:共享资源    大小:11.48MB    格式:ZIP    上传时间:2020-03-11 上传人:机****料 IP属地:河南
50
积分
关 键 词:
全套含CAD图纸、说明书 圆形 注塑 模具设计 全套 CAD 图纸 说明书
资源描述:

以上为资料预览概图,下载文件后为压缩包资料文件。【清晰,无水印,可编辑】dwg后缀为cad图,doc后缀为word格式,需要请自助下载即可,有疑问可以咨询QQ 197216396 或 11970985

内容简介:
毕业设计(论文)中期检查表(指导教师)指导教师姓名: 填表日期: 年 4月 25 日学生学号学生姓名 题目名称圆形筛盖注塑模具设计 已完成内容(请根据任务书进度计划认真检查)1. 完成模具相关的外文翻译;2. 完成开题报告;3. 完成总体装配图的设计。 检查日期:完成情况全部完成按进度完成滞后进度安排存在困难1. 一些零部件的尺寸选用目前还未确定,如脱模齿轮的大小;2. 模具调温系统结构未确定以及脱模推出机构的设计问题;3. 圆形筛盖内表面螺纹型芯的设计及上表面有79个小孔型芯。解决办法1. 通过网上查阅以及相关参考书,可以根据相关经验值来设计尺寸;2. 根据一些成功的设计实例,可以用一边旋转脱型芯一边脱模的方法;3. 模具调温系统结构可以根据自身模具结构参考一些实用的例子。 预期成绩优 秀良 好中 等及 格不及格建议 教师签名: 教务处实践教学科制表说明:1、本表由检查毕业设计的指导教师如实填写;2、此表要放入毕业设计(论文)档案袋中;3、各院(系)分类汇总后报教务处实践教学科备案。1毕业设计(论文)报告用纸编号: 毕业设计(论文)外文翻译(译文)学 院: 机电工程学院 专 业: 机械设计制造及其自动化 学生姓名: 学 号: 指导教师单位: 姓 名: 职 称: 年 6 月 3 日第 14 页 共 14 页毕业设计(论文)报告用纸1、 我国模具工业现状由于历史原因形成的封闭式、“大而全”的企业特征,我国大部分企业均设有模具车间,处于本厂的配套地位,自70年代末才有了模具工业化和生产专业化这个概念。生产效率不高,经济效益较差。模具行业的生产小而散乱,跨行业、投资密集,专业化、商品化和技术管理水平都比较低。据不完全统计,全国现有模具专业生产厂、产品厂配套的模具车间(分厂)近17000家,约60万从业人员,年模具总产值达200亿元人民币。但是,我国模具工业现有能力只能满足需求量的60左右,还不能适应国民经济发展的需要。目前,国内需要的大型、精密、复杂和长寿命的模具还主要依靠进口。据海关统计,1997年进口模具价值6.3亿美元,这还不包括随设备一起进口的模具;1997年出口模具仅为7800万美元。目前我国模具工业的技术水平和制造能力,是我国国民经济建设中的薄弱环节和制约经济持续发展的瓶颈。1、模具工业产业结构的现状 按照中国模具工业协会的划分,我国模具基本分为10大类,其中,冲压模和塑料成型模两大类占主要部分。按产值计算,目前我国冲压模占50左右,塑料成形模约占20,拉丝模(工具)约占10,而世界上发达工业国家和地区的塑料成形模比例一般占全部模具产值的40以上。 我国冲压模大多为简单模、单工序模和符合模等,精冲模,精密多工位级进模还为数不多,模具平均寿命不足100万次,模具最高寿命达到1亿次以上,精度达到35um,有50个以上的级进工位,与国际上最高模具寿命6亿次,平均模具寿命5000万次相比,处于80年代中期国际先进水平。我国的塑料成形模具设计,制作技术起步较晚,整体水平还较低。目前单型腔,简单型腔的模具达70以上,仍占主导地位。一模多腔精密复杂的塑料注射模,多色塑料注射模已经能初步设计和制造。模具平均寿命约为80万次左右,主要差距是模具零件变形大、溢边毛刺大、表面质量差、模具型腔冲蚀和腐蚀严重、模具排气不畅和型腔易损等,注射模精度已达到5um以下,最高寿命已突破2000万次,型腔数量已超过100腔,达到了80年代中期至90年代初期的国际先进水平。2、模具工业技术结构现状 我国模具工业目前技术水平参差不齐,悬殊较大。从总体上来讲,与发达工业国家及港台地区先进水平相比,还有较大的差距。 在采用CAD/CAM/CAE/CAPP等技术设计与制造模具方面,无论是应用的广泛性,还是技术水平上都存在很大的差距。在应用CAD技术设计模具方面,仅有约10%的模具在设计中采用了CAD,距抛开绘图板还有漫长的一段路要走;在应用CAE进行模具方案设计和分析计算方面,也才刚刚起步,大多还处于试用和动画游戏阶段;在应用CAM技术制造模具方面,一是缺乏先进适用的制造装备,二是现有的工艺设备(包括近10多年来引进的先进设备)或因计算机制式(IBM微机及其兼容机、HP工作站等)不同,或因字节差异、运算速度差异、抗电磁干扰能力差异等,联网率较低,只有5%左右的模具制造设备近年来才开展这项工作;在应用CAPP技术进行工艺规划方面,基本上处于空白状态,需要进行大量的标准化基础工作;在模具共性工艺技术,如模具快速成型技术、抛光技术、电铸成型技术、表面处理技术等方面的CAD/CAM技术应用在我国才刚起步。计算机辅助技术的软件开发,尚处于较低水平,需要知识和经验的积累。我国大部分模具厂、车间的模具加工设备陈旧,在役期长、精度差、效率低,至今仍在使用普通的锻、车、铣、刨、钻、磨设备加工模具,热处理加工仍在使用盐浴、箱式炉,操作凭工人的经验,设备简陋,能耗高。设备更新速度缓慢,技术改造,技术进步力度不大。虽然近年来也引进了不少先进的模具加工设备,但过于分散,或不配套,利用率一般仅有25%左右,设备的一些先进功能也未能得到充分发挥。缺乏技术素质较高的模具设计、制造工艺技术人员和技术工人,尤其缺乏知识面宽、知识结构层次高的复合型人才。中国模具行业中的技术人员,只占从业人员的8%12%左右,且技术人员和技术工人的总体技术水平也较低。1980年以前从业的技术人员和技术工人知识老化,知识结构不能适应现在的需要;而80年代以后从业的人员,专业知识、经验匮乏,动手能力差,不安心,不愿学技术。近年来人才外流不仅造成人才数量与素质水平下降,而且人才结构也出现了新的断层,青黄不接,使得模具设计、制造的技术水平难以提高。3、模具工业配套材料,标准件结构现状 近10多年来,特别是“八五”以来,国家有关部委已多次组织有关材料研究所、大专院校和钢铁企业,研究和开发模具专用系列钢种、模具专用硬质合金及其他模具加工的专用工具、辅助材料等,并有所推广。但因材料的质量不够稳定,缺乏必要的试验条件和试验数据,规格品种较少,大型模具和特种模具所需的钢材及规格还有缺口。在钢材供应上,解决用户的零星用量与钢厂的批量生产的供需矛盾,尚未得到有效的解决。另外,国外模具钢材近年来相继在国内建立了销售网点,但因渠道不畅、技术服务支撑薄弱及价格偏高、外汇结算制度等因素的影响,目前推广应用不多。 模具加工的辅助材料和专用技术近年来虽有所推广应用,但未形成成熟的生产技术,大多仍还处于试验摸索阶段,如模具表面涂层技术、模具表面热处理技术、模具导向副润滑技术、模具型腔传感技术及润滑技术、模具去应力技术、模具抗疲劳及防腐技术等尚未完全形成生产力,走向商品化。一些关键、重要的技术也还缺少知识产权的保护。我国的模具标准件生产,80年代初才形成小规模生产,模具标准化程度及标准件的使用覆盖面约占20%,从市场上能配到的也只有约30个品种,且仅限于中小规格。标准凸凹模、热流道元件等刚刚开始供应,模架及零件生产供应渠道不畅,精度和质量也较差。4、模具工业产业组织结构现状 我国的模具工业相对较落后,至今仍不能称其为一个独立的行业。我国目前的模具生产企业可划分为四大类:专业模具厂,专业生产外供模具;产品厂的模具分厂或车间,以供给本产品厂所需的模具为主要任务;三资企业的模具分厂,其组织模式与专业模具厂相类似,以小而专为主;乡镇模具企业,与专业模具厂相类似。其中以第一类数量最多,模具产量约占总产量的70%以上。我国的模具行业管理体制分散。目前有19个大行业部门制造和使用模具,没有统一管理的部门。仅靠中国模具工业协会统筹规划,集中攻关,跨行业,跨部门管理困难很多。 模具适宜于中小型企业组织生产,而我国技术改造投资向大中型企业倾斜时,中小型模具企业的投资得不到保证。包括产品厂的模具车间、分厂在内,技术改造后不能很快收回其投资,甚至负债累累,影响发展。 虽然大多数产品厂的模具车间、分厂技术力量强,设备条件较好,生产的模具水平也较高,但设备利用率低。 我国模具价格长期以来同其价值不协调,造成模具行业“自身经济效益小,社会效益大”的现象。“干模具的不如干模具标准件的,干标准件的不如干模具带件生产的。干带件生产的不如用模具加工产品的”之类不正常现象存在。2、 模具基本术语1、成型腔(又称型腔) 注塑模具是由几部分组合在一起形成成型腔,塑料熔体注入成形腔,并在成形腔内冷却成型。是成形腔形成了塑件的形状。因此,成型腔被定义为模具的成型部件。 成形腔由两部分组成:(1)型腔,即模具的凹模部分,形成塑件的外部形状。(2)型芯,即模具的凸模部分,形成塑件的内部形状。2、型腔和型芯 最简单的模具包括凉快模板。一块模板下陷成形腔,用于形成塑件的外部形状,这块木板被称为型腔板。同理,型芯板上凸起的型芯加工塑件的内部形状。这两块板拼合起来,在型腔和型芯之间形成的空间就是成型腔。3、浇口套注塑过程中,塑料以熔融状态从注塑机喷嘴射出,然后流过一通路进入模具成形腔。熔体流过的通路称作主流道,其套称作浇口套。4、分流道和浇口系统塑料熔体可能经过浇口套直接进入模具一个或几个型腔,或者熔体从浇口套流出,经过分流道和浇口再进入型腔。5、定位圈如果想让熔体没有任何阻碍地进入模具,注塑机的喷嘴和模具主流道必须位于同一轴线上。为确保正确安装,模具必须安装在注塑机的中心部位,(我们可以)通过使用定位圈达到这一目的。6、导柱和导套若加工具有均匀壁厚的塑件,必须确保型腔和型芯在同一轴线,这可以依靠导柱和导套实现。导柱安装在一块模板上,合模是进入安装在另一块模板上对应的导套里。7、固定部分和移动部分 各种模具结构(虽然不同,但均匀)可以划分为两个部分或部件。因此,固定在注塑机固定板的部分称为定模部分,同理,固定在注塑机移动板的部分称为动模部分。这样模具被安装在注塑机上。通常型芯安装在动模部分,其原理如下:塑件冷却后开模,由于熔体的收缩作用使塑件紧紧地包在行星上,这与型芯是安装在定模部分还是动模部分无关。然而塑件包紧在型芯上意味着必需使用某种形式的推出系统。如果型芯安装在动模部分,推出系统运动的动力很容易获得,此外,但型腔模具中,熔体直接进入模具内部,型腔必须固定在定模部分,型芯必然安装在动模部分。8、型腔和型芯的安装方法现在,我们已经知道型芯通常安装在动模部分,型腔安装于定模部分。然而,型腔和型芯在模具内的安装方式有多种。这里介绍两种方式供选择:(i)整体式,型腔和型芯均由一块钢板制成,形成模具结构的一部分;(ii)型腔和型芯由小块钢板或钢块坯料加工,称为镶件,镶装在支撑板上。选择哪种(型腔和型芯的)安装形式在模具设计中十分重要。不过,不论选择哪种方式,最终结果是相同的。不论哪种设计,包含型芯的模板或组合件被称为型芯板,包含型腔的模板或组合件被称为型腔板。9、型腔制造当决定制造一个模型时,没有额外工具制造费用,成本通过生产具体量零件来进行预测。有时,超过了预计的数量;有时,他们供不应求,为了满足需要,昂贵的修理成为必须的。通过机械的,磨的,或者电子发射机械地来制造腔,有一个固定的动力来提高金属迁移速率,切割工具正如金属工具已经被发展成为更重要的和更快的切割;为了每次能得到更深的切割口,磨制的轮子用特殊的刚来定做;为了在加快的等速下燃烧金属EDM机器已经被提高(改进)。已经完全的意识到更快的金属迁移速率导致更多的电子产生,但是同时它已经被意识到更新的腔制造与产生较多的热量有关。如果没有减轻能引起早期的失败,还直接与更高的压力有关。金属钢谨慎的供应者反对制造压力和坚强地劝告压力-救助的操作,当钢将被热处理时,钢是热处理和预先加热周期的部分热处理规格,然后金属出去压力将被消减。多数的腔是用变硬的钢制成的。因此,不必进行热处理。对于那些腔在立即制定之后,一个缓解压力的操作将被实施。对于每英寸钢厚环节压力温度作为一个规则大约是100F,低于调好的热量,大约持续30min,对于钢的制造者,最好检查缓解压力的热量。钢的制造者已经强调了关于制造压力的信息,但是对于一些原因还没有得到应有的关注。因为一个工具成型应该包括一个工具元素的所有需要,对于符号应该有合适的位置,例如下面:符号:为了热处理的钢:“符号:使用预先加热和使变硬到RC _。符号:为了预先变硬的钢:“符号:压力缓解_F,大约每_英寸厚度为_小时。每一个努力应该是已制成的到排除问题的看不见的来源, 即, 制作压力。型腔通过各种工序来生成。这个过程被决定,首先是在腔能够产生于所期望的作后结果时,而用最低的费用。其他的因素包括从一个腔到另一个腔,再生产的精确性,表面完成的质量,耐久性和可修补性。通常的,为了满足所有的具有的需要,可利用许多工序的结合,最普通的工序过程可在下面的部分进行讨论。特别地,封闭铸造也许被在应用中考虑,在腔的数量大于6,尺寸公差在0.005的范围内。它一般是可以修改的,对于复杂形状核不规则构型,除此之外,高度修饰的表面,很难从普通工艺中获得,这些修饰性表面,也许有一个木制的颗粒,皮革的颗粒或者适合于操作夹子的结构表面等等。几乎任何钢合金或者以屏遮掩的钢合金能铸造成大小和热处理成任何期望的金属硬度,这是在合金铸造的范围内实现,一个对比性成本评价将在任何情况下帮助封闭进展当大多数人生产和从储处的那些相同量的时候,封闭铸造工具制造,例如:它能有自由孔,合适的硬度,彼此一致。在那时间元素是一个因素,能以日代周,在这个过程中制造腔的重量和750lp差不多。封闭铸造方法引起制造低熔点材料的模型。例如:石蜡,塑料或者冰冻水银,这个模型是期望腔制造的一种再生产,当铸造准备为基础衬垫物,它适合允许的收缩量,正如为金属倾掉的浇注系统,完成的模型浸在难融材料的融浆里,然后包裹在封闭的材料里。也许是灰泥或者高耐火性能的陶瓷材料。随着包裹的封闭完全建立,模型在加热的烘炉中移到溶解的可溶的材料里,然后使之完成。收回融化的材料以备继续使用。模塑或者封闭铸造在佳人过程中完全干燥。完成这些步骤之后,封闭在准备为倾掉的金属加热在1000到2000F,前加热温度由被倾掉金属的种类来规定。当倾掉完成后,金属固化体产生,封闭物质从自由浇口出脱离,为了口的移动和清洗。对于腔的制造和可熔性材料的中心部分滑块是一个中间的步骤,这些模型滑块在模具里铸造是这个过程的起点,起点模型包括部分腔或者中心部分,中心部分在分界线宽正如附件的制造部分等等,都将被建成围绕部分腔和中心部分,因此形成所需要的形状作为完成的制造。在第二次世界大战期间,航空工业的蒸气涡轮机叶片封闭的铸造工艺就已经发展到了商业界,以至达到更高的精确度和质量,涡轮机叶片是由难的或者不可能被锻造的合金制造。结果是,在封闭的铸造过程中已经发展了精练,那是对模具制造领域非常有价值的。这些改进大部分是在封闭材料领域中,为了在铸造物上保持更金的公差这个目的。一些模具厂已经具备这个能力为他们自己的能力,在它们规则制造便利的一面来生产封闭铸造物。3、 浇注系统在注塑模中,连接注塑机喷嘴和各个型腔的流动通道是什么必要的,这种进料通道称为浇注系统。通常,浇注系统由主流道,分流道和浇口组成。这些术语应用在相应的进料通道本身,以及取出塑件是从进料通道中一同取出的浇注系统凝料。1、主流道 主流道是将熔融塑料从注塑机喷嘴传递到模具型腔的通道。主流道是浇口套的一部分,浇口套是独立于模具的单独零件。2、分流道分流道是引导熔融塑料进入模具型腔的通道。3、浇口浇口是熔融塑料进入型腔的入口。浇口有以下作用:约束熔体流动,引导熔体的流动方向,使分流道和塑件末端易于分离,快速冷却固化防止熔融塑料充满型腔后倒流。4、冷料井 冷料井正对着主流道。理论上,冷料井的作用是用来存在(塑件)冷却和推出过程中注塑机喷嘴处所形成的熔体前锋冷料。也许冷料井更重要的作用是开模时帮助浇道凝料脱出浇口套。 塑件成型后,主流道,分流道和浇口部分凝料将被废弃。但是,分流道和浇口在塑件质量和成本方面有着重要影响。4、 分型面分型面是指形成模具型腔的两块相合模板的接触表面,这两块模板形成一个密封型腔,防止熔融塑料从型腔中溢出。分型面分为两种形式:平面分型和非平面分型。 分型面的形状完全取决于塑件的形状。设计分型面是需进一步考虑塑件的脱模问题。许多塑件必须在非平面或曲面上确定分型线。若分型面不是平面,在某些设计中需要考虑不平衡力的问题。塑料熔体在压力作用下进入模具型腔时产生的胀模力有迫使模具沿横向分开的趋势,如果这种情况发生,塑件表面将产生飞边。模具两部分之间的相对运动受到导柱限制,但即使这样,由于胀模力较大,需要在斜分型面对面采取措施,来平衡胀模力,因此,镜像斜分型面的模具型腔,并扩延至整个模具。设计这类模具时,这种平衡设计形式很实用,因为一部分型腔位于模具中心线另一侧,可以平衡模具的受力状况。5、 模具冷却系统注塑生产的基本原理是把高温熔体注入模具型腔,熔体在型腔内迅速冷却到固话温度,并保持一定形状。由于模具温度在一定程度上控制塑件的整个成型周期,因此在生产中非常重要。熔体在高温模具内流动顺畅,但固化塑件推出前,一定的冷却阶段是必不可少的。另一方面,熔体在温度较低的模具中固化较快,但有可能造成塑件末端填充不满。因此必须在这两种对立的条件中选择一个平衡点,以获得最佳的生产循环。模具的工作温度与几种因素有关,包括成型材料的等级与类型、熔体在型腔内的流动路线、塑件壁厚以及浇注系统长度等。使用比充模要求稍高的温度住宿比较有利,这样生产的塑件熔接痕少、流痕不明显,其他缺陷也比较少,因此,提高了塑件表面质量。为保持模具和塑料熔体之间所需的温差,水(或其他液体)在模具上的通道或通孔中循环。这些通道或通孔称为流道或水道,整个水道系统称为循环系统。在充模阶段,温度最高的熔体位于进入口,即浇口附近;温度最低的熔体位于距进入口最远的地方。冷却介质在模具内循环时,介质温度将升高。因此,为使塑件表面获得均匀的冷却速率,冷却通道的路口应开设在高温塑件附近,受热后冷却介质温度升高,出口开设在低温塑件附近。然而由下面讨论可知这种理想状态并不总是可行的。为避免不必要的模具费用,设计者往往凭借经验设计冷却通道。冷却水或其他冷却介质回路所需的部件在市场上就可以买到。这些部件通过软管与模具连接在一起,通过这些部件形成的冷却回路模具温度便控制在要求的范围内。但是,使用这种直接与冷水相连的冷却回路是不可能精确控制模具温度的。为模具提供适合的冷却系统是设计者的责任。通常,最简单的冷却系统是在模板上纵向钻出通孔。然而,对于精密模具,这不是最有效的冷却办法。然而,使用钻孔的方式加工冷却水道时,冷却通道与塑件的距离一定不能太近即距离小于16mm,如果距离太近,有可能引起整个型腔的温度发生改变,使塑件出现问题。由于冷却通道不能距离同一模板上任何其他的孔道太近,这使得冷却回路的布局通常比较复杂,可以想到模板上存在大量的孔道或凹陷,用来安排推杆、导柱、导套、浇口套以及镶件等。冷却通道与其他孔道之间的安全距离为多远,很大程度上取决于所需的冷却通道的钻入深度。流道深度较深时,钻头有偏离预定加工路线的趋势。常用的规格是钻入深度达到150mm的冷却水道与其他孔道距离不小于3mm,比这更深的流道所需的距离增加到5mm。为获得最佳的冷却回路,设计初期就考虑冷却回路的位置不失为一种好办法。其他模具零件,如推杆、导套等,根据需要确定安装位置。6、 利用CAD/CAM设计尽管CAD/CAM制造商和供应商正在致力于(应付)摸具设计者在使用软件时要面对的各种挑战,这些设计者们仍然要克服很多问题。Protomold有限公司一个快速注射模具成型公司的资深质量工程师Kevin Crystal 报告说他面对的最大挑战是文件转换和生成草图曲面。“IGES、STEP等(标准)在不同CAD软件包间实现(转换数据时)还不是无可挑剔的”他解释道,“有些软件包创建的模型很糟糕,有些(创建的)还凑合,(也)有些(创建的)是相当可靠的,但是就我所知没有一个是完美的。而且,草图能在表面上引起的微妙的改变,如果你不明白正在发生什么的话,就会有下面的两件事情之一发生:你的CAD软件包(如果它很好用)会告诉你它不能生成草图,或者你的CAD软件包将会生成有内面的、细线裂缝或其他缺点的几何体。”适当的培训是Unity Mold LLC 的总经理Jack Mason 面临的一个问题。Unity Mold LLC是专用于成型特殊的材料如不锈钢、陶瓷制品以及各种定位夹具的精密模具的供应商。Mason 发现再培训是设备/软件进化挑战的结果。优良的技术支持是供应商在三个(需要考虑的)因素中最重要的。精密模具的Holby也需要最新的信息,而且他打出的电话应及时回复。Unity 模具的Mason 也需要他的回应速度快且质量高。虽然CAD/CAM的挑战并不明确,但国外的竞争(尤其是国外的供应商)或许是现在的磨具制造商面临的(最大的)挑战。结果,国内模具制造商需要带给客户更大的实惠(而不仅仅是低成本的模具)比如快速转变、摸具质量和产品/进程的顾问。当今的CAD/CAM软件支持模具制造商在各个领域的努力。当然,随着员工变老、退休,他表现出来的经验和水平也会降低。CAD/CAM系统正在开始利用基于知识的技术获得雇员的经验和技术,以便使这些经验和技术能被参考和再利用。虽然现在获得信息的水平仍相当的简单,但对于很多制造商来说它还是很有价值的资产。过去,模具、工具和冲模工作时常需要选择一个CAM系统,该系统擅长加工型腔和型芯,但不能加工模具底座部分各部分,比如沟槽、流道、冷却管线、顶出装置和定位环等。模具制造商必须摸索用不适合这些特征的CAD系统试着制造这些部件,或者用一个独立的CAM系统为其编程。越来越多的CAM系统具有了能够满足模具制造商广泛需求的功能。鉴于时间压力,许多公司没有时候探究他们拥有的软件提供的所有工具。在许多情况下,能够显著缩短开发时间的软件工具并不起作用,而这只是因为使用者没有时间学习它们。通常,模具公司已有但没有利用的补充工具会使工作进程更加有效。以自动进给速率的最优化为例可能(能完成这个工作的)工具(早)已经(包含)在你的软件中了。该技术用多种方式让使用者获益,举例来说,它可以避免设备的磨损和断裂,能提供较好的表面质量,能够优化进给速度并最大程度的利用机床。最后,真正的价值可以用美元来衡量,(这些美元)是通过减少模具制造的时间(节约来)的。高速加工将高进给速率、高主轴转速、特种工具及特种工具运动结合起来,以产生更快的回转并获得好的表面光洁度。进给速度的最优化使得用户干同样工作时能采用最高效的、变化的进给速率,可以节省更多的时间、(减少了)刀具磨损并节约了资金。想确保你的软件投资的最大化依赖于卖给你软件的本地经销商,他们将帮助你最大程度的使用你购买的软件。好的经销商会快速给你指导并给你指明正确的方向。为了在高度竞争的环境中成功,模具制造商在决定使用哪一种软件之前,要在建立最有效率的程序和消除操作瓶颈方面投资。第二个难题聚集在型芯、型腔和电极的加工上。公司需要快递的加工生产,这些零件3D模型的设计能够在整个生产过程中节省时间。所以现存的刀具路径驱动器驱动刀具进入(工件)拐角,在拐角处刀具和材料的接触面积增大,从而使机床载荷显著提高。为了补偿这一缺陷,程序员被迫综合使用较小的刀具进给布长、较浅的切削深度、较慢的主轴转速以及进给速率。当然,这就造成了加工时间的延长和成本的提高。首先,确保系统可以处理翻译过来的几何图形。引入数据的再利用是操作过程中很重要的一部分。系统必须再利用那些可能创建在与之不同公差系统中的数据允许有小的但不会引起建模和加工系统冲突的数学错误。系统修复有拓补关系问题的几何图形的能力是提高生产能力的一个重要工具。(应该)将你的CAD/CAM投资向着开放型的解决方案发展。建立在通用几何建模引擎基础上的CAD/CAM系统能够100%的兼容和共享几何体,而且不用进行数据翻译。对模具制造商来说越来越重要的,且与CAD/CAM密切相关的另一个改进领域是支持协作的工作领域。摸具设计和制造的主要问题是由转包商锁承包的经常远离产品OEM。支持OEM、摸具设计者、制造者、独立的工具生产商之间的相互合作在速度和成本控制的全球化的商务环境中是非常重要的。通常这种合作关系得到支持很少,(因为)只是通过基本的数据传输方法、简陋的讨论问题方式以及实时的设计和模型实现的。而这正在改变。CAD/CAM软件在这一情节中起重要作用。模具生产商将会持续使用CAD/CAM软件包,不仅能够与相关部门的技术改进保持一致,而且能够促进自己成为新技术的采用者。利用前沿技术是非常重要的。再者,专业化是至关重要的。磨具制造过程是非常特殊的,同时又是一个由许多部分混合组成的,包括数据导入、分析、3D设计、2D绘图、2至5轴铣削、先切割、电火花加工以及数据输出。我们相信这些难题会被处理并(最终)被解决,(解决的方法)可以通过选择在整个过程有可行性经验的CAD/CAM供应商(来实现),包括发展前沿技术和提供优良的客户支持。在这点上,一种有效的技术支持对客户来说是非常重要的,即建立一个有效的循环机制:只有深知用户的日常需求才能把研究和开发导入正确的方向。这样,当选择CAD/CAM(系统)销售商时,要确定找以为愿意花时间理解你的公司面临的难题并且愿意同你密切合作来为你的公司找到最好方法的人。销售商应该同你密切联系以确保最新设备还有加工技术是可用的。要实现在最短时间内克服设计难题并(把方案)提供给客户,做适合正确的CAD/CAM投资是至关重要的。7、 高速加工和现代模具制造目前,采用高速切削生产模具已经成为模具制造的大趋势,在国外一些模具生产厂家,高速机床大面积取代电火花机床,高速切削大大提高了模具生产效率。机床企业瞄准模具生产企业,有的加工中心生产厂机床的60%以上卖给模具加工企业。高速切削逐渐取代电火花精加工模具在国外的模具制造企业已经普遍采用,高速切削生产模具已经成为逐渐模具制造的大趋势,大大提高了模具生产效率和质量。采用高速切削替代电火花生产模具,可以明显提高效率、提高模具精度、使用寿命长。1高速加工在模具制造中的应用(1)高速切削的优点: 1) 刀具的高转速和机床的高进给以及高加速度,大大提高金属切除率; 2) 高速切削减小切削力; 3) 高速切削热大部分由切屑带走,工件发热少; 4) 高速切削减少振动,提高加工质量;(2)高速加工应用于模具加工的效益 1) 快速粗加工和半精加工,提高加工效率; 2) 高速高精度精加工硬切削代替光整加工,表明质量高,形状精度提高,比EDM加工提高效率50%,减少手工修磨; 3) 硬切削加工最后成型表面,提高表面质量、形状精度,(不仅是表面粗糙度低,而且表面光亮度高),用于复杂表面的加工更具优势; 4) 避免EDM加工产生的表面损伤,提高模具寿命20%; 5) 结合CAD/CAM技术快速加工电极,特别是形状复杂、薄壁类电极。(3)采用高速切削加工模具需要解决的问题在国内,由于资金、技术等方面的原因,应用高速切削生产模具还处于初期阶段。 还存在机床、刀具、工艺以及其他方面的一些问题需要逐步解决。 缺点是加工成本高,对刀具的使用有较高的要求,不能使用过大的刀具,要有复杂的计算机编程技术做支持,设备运行成本高。2.加工模具的高速加工机床 模具精加工和硬切削加工需要数控高速机床,模板、模架加工需要精密、高效数控机床等。许多机床企业瞄准模具生产,有的加工中心生产厂机床的60%以上卖给模具企业。模具行业今后几年年均有50亿元的固定资产投入,其中80%是购买模具加工设备,也就是说每年有40亿元人民币要购买金切机床。目前我国数控机床的平均利用率大约20%,高速机床的利用率35%。模具企业也有相当的单位购买高速机床,从600040000rmp的都有。(1)高速机床的技术参数要求 加工中心主轴大功率、高转速,满足粗精加工;精加工模具要用小直径刀具,机床一般要达到1500020000rmp。通常主轴转速在10000rpm以下的机床可以进行粗加工和半精加工,达不到精加工的精度;无法达到400m/min以上的切削速度。(2)五轴机床的应用增加趋势 1)加工路线灵活,表面形状复杂; 2)加工范围大,适合多种类型模具加工; 3)切削条件好,减少刀具磨损,提高刀具寿命;(3)购买CAD/CAM软件和高速机床配套据统计,每年有几十亿美元用于进口机床,大部分电加工机床和高速机床需要进口。3.高速切削模具的刀具技术 高速切削加工还需配备适宜高速切削的刀具。高速加工刀具材料的进展促使了高速加工的发展。硬质合金涂层刀具、聚晶增强陶瓷刀具使得兼顾高硬度的刀刃部和高韧性的基体成为可能。聚晶立方氮化硼(PCBN)刀片,其硬度可达35004500HV。聚晶金刚石(PCD)其硬度可达600010000HV。近年来德国SCS、日本三菱(神钢)及住友、瑞士山特维克、美国肯纳飞硕等国外著名刀具公司都先后推出了各自的高速切削刀具,不仅有高速切削普通结构钢的刀具,还有能直接高速切削淬硬钢的陶瓷刀具等超硬刀具,尤其是涂层刀具异军突起,在淬硬钢的半精加工和精加工中发挥着巨大作用。新刀具材料和刀具技术的出现已经使高速加工上的瓶颈问题不再会出现在刀具上。 但是,进口刀具的昂贵价格也阻碍高速切削模具的重要因素。 一般来说,刀具以及刀夹的加速度达到3g以上,刀具的径向跳动要小于0.015mm,而刀的长度不能大于4倍的刀具直径。根据SANDVIK公司的实际统计,在使用碳氮化钛(TICN)涂层的整体硬质合金立铣刀(58HRC)进行高速铣削时,粗加工刀具线速度约为100m/min,而精加工和超精加工时,其线速度超过了 280m/min。这样对刀具的材料(包括硬度、韧性、红硬性(高温状态下保持切削性能)、刀具的形状(包括排屑性能、表面精度、动平衡性等)以及刀具寿命都有很高的要求。根据国内模具高速精加工的经验,采用小直径球头铣刀进行模具精加工时,线速度超过了400800m/min。选择足够高速度的机床硬切削模具精加工。Delcam 采用0.8mm直径的刀具加工窄槽,转速40000rpm,0.1mm深度,进给速度30m/min。.(1)选择刀具参数,如负前角刀具等。刀具要求比普通加工要求抗冲击韧性更高,还要求抗热冲击能力强;(2)采取多种方法提高刀具寿命,降低刀具成本。(3) 采用高速刀柄,目前应用最多的是HSK刀柄,热压装夹刀具。注意刀具装夹后的整体动平衡;(4)当前的刀具企业在解决高速切削刀具技术方面已经做了很多工作,面向加工的刀具服务会帮助解决很多问题,刀具生产厂家成为主体,参考刀具生产厂家提供的技术参数。4.提高高速切削模具效率的工艺技术(1)刀具直径和长度的选择(2)HSM和EDM的选择(3)干切削和润滑冷却(4)进给选择:通常进给量 铣刀直径10%,进给宽度 铣刀直径40%。国外高速铣削加工零件材料质量较,材料质量标准相同,加工性能比较稳定;而国外公司生产的刀具也是以他们的材料标准做试验;推荐的加工参数一般比较适合他们的标准,如果使用他们的刀具,与国内的零件材质有一定的区别,在高速铣削时,这种差别表现得较为明显,有些参数可以直接应用,但有些效果就比较差。而国内企业一般选用零件材质有一定的标准,所使用的零件材料,特别是能用高速加工的零件材质,一般会局限在某些零件材料范围内,这对我们应用高速加工技术也提供了有利的条件,会在较少的加工材料范围内应用。这里要强调的是,一定要在这些材料上选取优化出一套适合本企业的加工工艺参数,并且纳入企业标准。选用国产刀具,很少有推荐高速铣削的技术参数的,有必要做试验,取得比较满意的参数,最好选用固定的刀具生产厂家,减少试验的次数,形成加工技术标准,这样可以提高设备有效利用率,降低生产成本,可以取得较好的经济效益。5.高速切削的加工刀具路径和编程 1)平面进给路径选择 2)轮廓加工路径选择 3)保持切削载荷平稳 4)保持相对平稳的进给量和进给速度 5)在平面切削中保持园拐角 6)合理选择精加工余量 HSC精加工对CAM的编程要求:1)尽量避免拐角的铣削运动;2)尽量避免工件外的进刀与退刀运动,直接从轮廓进入下一个深度。或者采用螺旋线或斜向进给切入;3)恒定每刃进给,提高质量,延长刀具寿命;4)轮廓加工保持在水平面上等。高速切削CAM软件:Delcam 公司几年前就开始了高速切削加工编程技术的研究,开发了高速切削自动编程软件模块;最近,MasterCAM 公司也开发了高速切削自动编程软件模块;国内北航海尔也在开发高速切削自动编程软件模块;6.高速机床数控系统的特点 1)高速数据处理 2)拐角预测处理3)NURBS非有理样条插补曲线加工7.高速切削模具的安全问题 1)刀具磨损和破坏的监测; 2)刀片连接的强度;3)和普通机床加工不同,安全防护和开机前对机床和刀具的严格检查非常重要。8.目前我国在采用高速加工模具技术中存在的问题(1)机床 1) 国产高速机床整体性能尚有差距,功能部件性能还不能满足要求。包括电主轴的功率和转速,进口机床价格高; 2) 机床的高速下动态特性研究还不够,因而影响整机的性能; 3) 五轴机床还不够成熟,进口机床价格太高; 4) 配套技术和设备还不完全。(2)刀具: 1) 国产刀具还不能够适应高速切削的应用,特别是高速硬切削光整加工。进口刀具价格高。刀具技术是影响高速切削加工模具的一个重要因素。 2) 配套技术还不够,包括刀柄、成套在线动平衡等。(3)高速模具加工工艺技术及实验 1) 由于高速加工模具的历史比较短,缺乏应用经验积累; 2) 对高速切削工艺研究比较少,投入不够,立项比较困难; 3) 缺少高速切削数据库或手册,目前还是空白; 4) 模具生产厂家对高速切削的认识不够,缺乏长期效益的分析对比;(4) 缺乏高速切削自动编程软件;(5)缺乏五轴联动高速切削自动编程CAM软件。 模具市场对高速加工有强烈需求,但是技术跟不上。起步晚,基础较差,整体技术水平不高,发展缓慢。需要各个方面协调发展,产学研结合,加大投入,综合利用各个方面力量推动高速切削在模具制造中的应用。我们希望,通过各方面的努力,在市场需求的推动下,通过技术进步,像汽车、机床、家电一样,在不远的将来,我国不但要成为模具生产大国,而且要成为模具生产强国。1编号: 毕业设计(论文)外文翻译(原文)学 院: 机电工程学院 专 业: 机械设计制造及其自动化 学生姓名: 学 号: 指导教师单位: 姓 名: 职 称: 年 6 月 3 日第 19 页 共 20 页桂林电子科技大学毕业设计(论文)报告用纸一、由于历史原因形成的封闭式、“ 大 而全” 的 企业特征,我国大部分企业均设有模具车间,处于本厂的配套地位,自 70 年代末才有了模具工业化和生产专业化这个概念。Chinas mold industryDue to historical reasons for the formation of closed, big and complete enterprise features, most enterprises in China are equipped with mold workshop, in factory matching status since the late 70s have a mold the concept of industrialization and specialization of production. 生产效率不高,经济效益较差。 Production efficiency is not high, poor economic returns. 模具行业的生产小而散乱,跨行业、投资密集,专业化、商品化和技术管理水平都比较低。 Mold production industry is small and scattered, cross-industry, capital-intensive, professional, commercial and technical management level are relatively low.据不完全统计,全国现有模具专业生产厂、产品厂配套的模具车间(分厂)近17000家,约60万从业人员,年模具总产值达200亿元人民币。 According to incomplete statistics, there are now specialized in manufacturing mold, the product supporting mold factory workshop (factory) near 17 000, about 600 000 employees, annual output value reached 20 billion yuan mold. 但是,我国模具工业现有能力只能满足需求量的60左右,还不能适应国民经济发展的需要。 However, the existing capacity of the mold and die industry can only meet the demand of 60%, still can not meet the needs of national economic development. 目前,国内需要的大型、精密、复杂和长寿命的模具还主要依靠进口。 At present, the domestic needs of large, sophisticated, complex and long life of the mold also rely mainly on imports. 据海关统计,1997年进口模具价值6.3亿美元,这还不包括随设备一起进口的模具;1997年出口模具仅为7800万美元。 According to customs statistics, in 1997 630 million U.S. dollars worth of imports mold, not including the import of mold together with the equipment; in 1997 only 78 million U.S. dollars export mold. 目前我国模具工业的技术水平和制造能力,是我国国民经济建设中的薄弱环节和制约经济持续发展的瓶颈。 At present the technological level of China Die & Mould Industry and manufacturing capacity, Chinas national economy in the weak links and bottlenecks constraining sustainable economic development.1、Research on the Structure of industrial products mold按照中国模具工业协会的划分,我国模具基本分为10大类,其中,冲压模和塑料成型模两大类占主要部分。 In accordance with the division of China Mould Industry Association, China mold is divided into 10 basic categories, which, stamping die and plastic molding two categories accounted for the main part. 按产值计算,目前我国冲压模占50左右,塑料成形模约占20,拉丝模(工具)约占10,而世界上发达工业国家和地区的塑料成形模比例一般占全部模具产值的40以上。 Calculated by output, present, China accounts for about 50% die stamping, plastic molding die about 20%, Wire Drawing Die (Tool) about 10% of the worlds advanced industrial countries and regions, the proportion of plastic forming die die general of the total output value 40%.我国冲压模大多为简单模、单工序模和符合模等,精冲模,精密多工位级进模还为数不多,模具平均寿命不足100万次,模具最高寿命达到1亿次以上,精度达到35um,有50个以上的级进工位,与国际上最高模具寿命6亿次,平均模具寿命5000万次相比,处于80年代中期国际先进水平。 Most of our stamping die mold for the simple, single-process mode and meet the molds, precision die, precision multi-position progressive die is also one of the few, die less than 100 million times the average life of the mold reached 100 million times the maximum life of more than accuracy 3 5um, more than 50 progressive station, and the international life of the die 600 million times the highest average life of the die 50 million times compared to the mid 80s at the international advanced level.我国的塑料成形模具设计,制作技术起步较晚,整体水平还较低。 Chinas plastic molding mold design, production technology started relatively late, the overall level of low. 目前单型腔,简单型腔的模具达70以上,仍占主导地位。 Currently a single cavity, a simple mold cavity 70%, and still dominant. 一模多腔精密复杂的塑料注射模,多色塑料注射模已经能初步设计和制造。A sophisticated multi-cavity mold plastic injection mold, plastic injection mold has been able to multi-color preliminary design and manufacturing. 模具平均寿命约为80万次左右,主要差距是模具零件变形大、溢边毛刺大、表面质量差、模具型腔冲蚀和腐蚀严重、模具排气不畅和型腔易损等,注射模精度已达到5um以下,最高寿命已突破2000万次,型腔数量已超过100腔,达到了80年代中期至90年代初期的国际先进水平。 Mould is about 80 million times the average life span is about, the main difference is the large deformation of mold components, excess burr side of a large, poor surface quality, erosion and corrosion serious mold cavity, the mold cavity exhaust poor and vulnerable such as, injection mold 5um accuracy has reached below the highest life expectancy has exceeded 20 million times, the number has more than 100 chamber cavity, reaching the mid 80s to early 90s the international advanced level.2、mold Present Status of Technology我国模具工业目前技术水平参差不齐,悬殊较大。 Technical level of Chinas mold industry currently uneven, with wide disparities. 从总体上来讲,与发达工业国家及港台地区先进水平相比,还有较大的差距。 Generally speaking, with the developed industrial countries, Hong Kong and Taiwan advanced level, there is a large gap. 在采用CAD/CAM/CAE/CAPP等技术设计与制造模具方面,无论是应用的广泛性,还是技术水平上都存在很大的差距。 The use of CAD / CAM / CAE / CAPP and other technical design and manufacture molds, both wide application, or technical level, there is a big gap between both. 在应用CAD技术设计模具方面,仅有约10%的模具在设计中采用了CAD,距抛开绘图板还有漫长的一段路要走;在应用CAE进行模具方案设计和分析计算方面,也才刚刚起步,大多还处于试用和动画游戏阶段;在应用CAM技术制造模具方面,一是缺乏先进适用的制造装备,二是现有的工艺设备(包括近10多年来引进的先进设备)或因计算机制式(IBM微机及其兼容机、HP工作站等)不同,或因字节差异、运算速度差异、抗电磁干扰能力差异等,联网率较低,只有5%左右的模具制造设备近年来才开展这项工作;在应用CAPP技术进行工艺规划方面,基本上处于空白状态,需要进行大量的标准化基础工作;在模具共性工艺技术,如模具快速成型技术、抛光技术、电铸成型技术、表面处理技术等方面的CAD/CAM技术应用在我国才刚起步。 In the application of CAD technology design molds, only about 10% of the mold used in the design of CAD, aside from drawing board still has a long way to go; in the application of CAE design and analysis of mold calculation, it was just started, most of the game is still in trial stages and animation; in the application of CAM technology manufacturing molds, first, the lack of advanced manufacturing equipment, and second, the existing process equipment (including the last 10 years the introduction of advanced equipment) or computer standard (IBM PC and compatibles, HP workstations, etc.) different, or because of differences in bytes, processing speed differences, differences in resistance to electromagnetic interference, networking is low, only about 5% of the mold manufacturing equipment of recent work in this task; in the application process planning CAPP technology, basically a blank state, based on the need for a lot of standardization work; in the mold common technology, such as mold rapid prototyping technology, polishing, electroforming technologies, surface treatment technology aspects of CAD / CAM technology in China has just started. 计算机辅助技术的软件开发,尚处于较低水平,需要知识和经验的积累。 Computer-aided technology, software development, is still at low level, the accumulation of knowledge and experience required. 我国大部分模具厂、车间的模具加工设备陈旧,在役期长、精度差、效率低,至今仍在使用普通的锻、车、铣、刨、钻、磨设备加工模具,热处理加工仍在使用盐浴、箱式炉,操作凭工人的经验,设备简陋,能耗高。 Most of our mold factory, mold processing equipment shop old, long in the length of civilian service, accuracy, low efficiency, still use the ordinary forging, turning, milling, planing, drilling, grinding and processing equipment, mold, heat treatment is still in use salt bath, box-type furnace, operating with the experience of workers, poorly equipped, high energy consumption. 设备更新速度缓慢,技术改造,技术进步力度不大。 Renewal of equipment is slow, technological innovation, technological progress is not much intensity. 虽然近年来也引进了不少先进的模具加工设备,但过于分散,或不配套,利用率一般仅有25%左右,设备的一些先进功能也未能得到充分发挥。 Although in recent years introduced many advanced mold processing equipment, but are too scattered, or not complete, only about 25% utilization, equipment, some of the advanced functions are not given full play.缺乏技术素质较高的模具设计、制造工艺技术人员和技术工人,尤其缺乏知识面宽、知识结构层次高的复合型人才。 Lack of technology of high-quality mold design, manufacturing technology and skilled workers, especially the lack of knowledge and breadth, knowledge structure, high levels of compound talents. 中国模具行业中的技术人员,只占从业人员的8%12%左右,且技术人员和技术工人的总体技术水平也较低。 Chinas mold industry and technical personnel, only 8% of employees 12%, and the technical personnel and skilled workers and lower the overall skill level. 1980年以前从业的技术人员和技术工人知识老化,知识结构不能适应现在的需要;而80年代以后从业的人员,专业知识、经验匮乏,动手能力差,不安心,不愿学技术。 Before 1980, practitioners of technical personnel and skilled workers, the aging of knowledge, knowledge structure can not meet the current needs; and staff employed after 80 years, expertise, experience lack of hands-on ability, not ease, do not want to learn technology. 近年来人才外流不仅造成人才数量与素质水平下降,而且人才结构也出现了新的断层,青黄不接,使得模具设计、制造的技术水平难以提高。 In recent years, the brain drain caused by personnel not only decrease the quantity and quality levels, and personnel structure of the emergence of new faults, lean, make mold design, manufacturing difficult to raise the technical level.mold industry supporting materials, standard parts of present condition近10多年来,特别是“八五”以来,国家有关部委已多次组织有关材料研究所、大专院校和钢铁企业,研究和开发模具专用系列钢种、模具专用硬质合金及其他模具加工的专用工具、辅助材料等,并有所推广。 Over the past 10 years, especially the Eighth Five-Year, the State organization of the ministries have repeatedly Material Research Institute, universities and steel enterprises, research and development of special series of die steel, molds and other mold-specific carbide special tools, auxiliary materials, and some promotion. 但因材料的质量不够稳定,缺乏必要的试验条件和试验数据,规格品种较少,大型模具和特种模具所需的钢材及规格还有缺口。 However, due to the quality is not stable enough, the lack of the necessary test conditions and test data, specifications and varieties less, large molds and special mold steel and specifications are required for the gap. 在钢材供应上,解决用户的零星用量与钢厂的批量生产的供需矛盾,尚未得到有效的解决。 In the steel supply, settlement amount and sporadic users of mass-produced steel supply and demand contradiction, yet to be effectively addressed. 另外,国外模具钢材近年来相继在国内建立了销售网点,但因渠道不畅、技术服务支撑薄弱及价格偏高、外汇结算制度等因素的影响,目前推广应用不多。 In addition, in recent years have foreign steel mold set up sales outlets in China, but poor channels, technical services support the weak and prices are high, foreign exchange settlement system and other factors, promote the use of much current.模具加工的辅助材料和专用技术近年来虽有所推广应用,但未形成成熟的生产技术,大多仍还处于试验摸索阶段,如模具表面涂层技术、模具表面热处理技术、模具导向副润滑技术、模具型腔传感技术及润滑技术、模具去应力技术、模具抗疲劳及防腐技术等尚未完全形成生产力,走向商品化。 Mold supporting materials and special techniques in recent years despite the popularization and application, but failed to mature production technology, most still also in the exploratory stage tests, such as die coating technology, surface treatment technology mold, mold guide lubrication technology Die sensing technology and lubrication technology, mold to stress technology, mold and other anti-fatigue and anti-corrosion technology productivity has not yet fully formed, towards commercialization. 一些关键、重要的技术也还缺少知识产权的保护。 Some key, important technologies also lack the protection of intellectual property.我国的模具标准件生产,80年代初才形成小规模生产,模具标准化程度及标准件的使用覆盖面约占20%,从市场上能配到的也只有约30个品种,且仅限于中小规格。 Chinas mold standard parts production, the formation of the early 80s only small-scale production, standardization and standard mold parts using the coverage of about 20%, from the market can be assigned to, is just about 30 varieties, and limited to small and medium size. 标准凸凹模、热流道元件等刚刚开始供应,模架及零件生产供应渠道不畅,精度和质量也较差。 Standard punch, hot runner components and other supplies just the beginning, mold and parts production and supply channels for poor, poor accuracy and quality.3、Die & Mould Industry Structure in Industrial Organization我国的模具工业相对较落后,至今仍不能称其为一个独立的行业。 Chinas mold industry is relatively backward and still could not be called an independent industry. 我国目前的模具生产企业可划分为四大类:专业模具厂,专业生产外供模具;产品厂的模具分厂或车间,以供给本产品厂所需的模具为主要任务;三资企业的模具分厂,其组织模式与专业模具厂相类似,以小而专为主;乡镇模具企业,与专业模具厂相类似。 Mold manufacturer in China currently can be divided into four categories: professional mold factory, professional production outside for mold; products factory mold factory or workshop, in order to supply the product works as the main tasks needed to die; die-funded enterprises branch, the organizational model and professional mold factory is similar to small but the main; township mold business, and professional mold factory is similar. 其中以第一类数量最多,模具产量约占总产量的70%以上。 Of which the largest number of first-class, mold production accounts for about 70% of total output. 我国的模具行业管理体制分散。 Chinas mold industry, decentralized management system. 目前有19个大行业部门制造和使用模具,没有统一管理的部门。 There are 19 major industry sectors manufacture and use of mold, there is no unified management of the department. 仅靠中国模具工业协会统筹规划,集中攻关,跨行业,跨部门管理困难很多。 Only by China Die & Mould Industry Association, overall planning, focus on research, cross-sectoral, inter-departmental management difficulties are many.模具适宜于中小型企业组织生产,而我国技术改造投资向大中型企业倾斜时,中小型模具企业的投资得不到保证。 Mold is suitable for small and medium enterprises organize production, and our technical transformation investment tilted to large and medium enterprises, small and medium enterprise investment mold can not be guaranteed. 包括产品厂的模具车间、分厂在内,技术改造后不能很快收回其投资,甚至负债累累,影响发展。 Including product factory mold shop, factory, including, after the transformation can not quickly recover its investment, or debt-laden, affecting development.虽然大多数产品厂的模具车间、分厂技术力量强,设备条件较好,生产的模具水平也较高,但设备利用率低。 Although most products factory mold shop, factory technical force is strong, good equipment conditions, the production of mold levels higher, but equipment utilization rate.我国模具价格长期以来同其价值不协调,造成模具行业“自身经济效益小,社会效益大”的现象。 Price has long been Chinas mold inconsistent with their value, resulting in mold industry own little economic benefit, social benefit big phenomenon. “干模具的不如干模具标准件的,干标准件的不如干模具带件生产的。干带件生产的不如用模具加工产品的”之类不正常现象存在。 Dry as dry mold mold standard parts, standard parts dry as dry mold with pieces of production. Dry with parts manufactured products than with the mold of the class of anomalies exist.2、 Basic terminology1、ImpressionThe injection mould is an assenbly of parts containing within an inpression into which plastic material is injected and cooled. It is the impression which gives the moulding its form. The impression may, therefore, be defined as thatpart of the mould which imparts shape to the moulding. The impression is formed by two mould mimbers:(1)The cavity, which is the female portion of the mould, gices the moulding its external form. (2)The core, which is the male portion of the mould , forms the internal shape of the moulding. 2、Cavity an core platesThe basic mould in this case consists of two plates. Into one plate is sunk the cavity which shapes the outside form of the moulding and os therefore known as the cavity plate. Similarly, the core which projects form the core plate forms the inside shape of the moulding os closed, the two plates come together forming a space between the cavity and core which is the impression. 3、Sprue bushDuring the injection process plastic material is delivered to the mozzle of the machie as a melt;it is then tramsferred to the impression though a passage. The material in this passage is termed the sprue, and the bush is called a sprue bush. 4、Runner and gate systemsThe material may bedirectly injected into the impression though the sprue bush or for moulds containing several impressions it may pass from the sprue bush hole through a runner and gate system therefore entering the impression. 5、Register ring If the material is to pass without hidrance into the mould the mozzle and sprue must be correctly aligned. To endure that this is so the mould must be central to the machine and this can be achieved by including a regicter ring. 6、Guide pillars and bushesTo mould an even-walled article it is necessary to ensure that the cavity and core are keptin alignmemt. This is done by incorporating guide pillars on one mould plate which then enter corresponding guide bushes in the other mould plate as the mouls closes. 7、Fixed half and moving halfThe various mould parts fall naturally into two sections or halves. Hence, that half attached to the stationary platen of the machine (indicated by the chain dotted line)is termed the fixed half, The other half of the mould attached to the moving platen of the machine is known simply as the moving half. Now it has to be situsted. Generally the core is situated in the moving half and the overriding reason why this is so, is as follows:The moulding as it cools, will shrink on to the core and remain with it as the mould opens. This will occur irrespective of whether the core is in the fixed half or the moving half. However, this shrinkage on to the core means that some form of ejector system is almostly certainly necessary. Motivation for this ejector system iseasily provided if the core is in the moving half. Moreover, in the case of our single-impression basic mould, where a direct sprue feed to the underside of the moulding is desired the cavity must be in the fixed half and the core in the moving half. 8、Methods of incorporating cavity and coreWe have now seen that in general the core is incorporsted in the moving half and the cavity in the fixed half. However, there are various methods by which the cavity and core can be incorporated in their respective halves of the mould. These represent two basic alternatives (i) the integer method where the cavity and core can be machined form steel plates which become part of the structural build-up of the mould, or (ii) the cavity and core can be machined form small blocks of steel, termed inderts, and subsequently bolstered. The choice between these alternatives constitutes an important decision on the part of the mould designer. The final result, nevertheless, will be the contains the core is termed the core plate and the plate or assembly which contains the cavity is termed the cavity plate. 9、Cavity FabricationWhen a decision for making a mold is made, the cost is predicated on producing a specified quantity of parts without additional tooling expenditure. Sometimes, the anticipatesare quantities are exceeded; other times, they all short of requirements, and costly repairs becomenecesary in order to supply the needs.In the making of cavities by machining, grinding, or electric discharge machining, there is constant drive to improve the rate of metal removal. Cutting tools as well as machine tools are developed for heavier and faster cuts; grinding wheels are tailor-made for special steels to allow deeper cuts per pass; and EDM machines are revamped to burn the metal at an accelerated pace.It is fully appreciated that faster mental-removal rate leads to more economical manufacture,but at the same time it mast be recognized that the newer cavity fabrication is associated with generation of more heat and indirectly with higher stresses that if not relieved can cause premature gailure.Suppliers of tool steel caution the user against fabricating stresses and strongly advise a stress-relieving operation. When a steel is to be heat-treated and a preheat cycle ia part of the heat-treating specification, then the metal-removal stresses will be eliminated. A great number of cavities are made of prehardened steel, and therefore would not be heat-treated.For those cavities,a stress-relieving operation should be carried out immediately after fabricaton.the stress-relieving temperature as a rule is about 100F below the tempring heat and is held for 30 min. for each inch of steel thickness. It is best to check the stress-relieving heat and time with the maker of the steel. The information about fabrication stress has always been emphasized by the steelmakers,but for some reason it has not been given the attention it deserves. Since a tool drawing should cover all the requirements of a tool element, it would be the appropriate place for a note such as the following: Note: For heat-treated steel:“Note: Use preheat and harden to RC _.” Note: For prehardened steel:“Note: Stress relieve_F for_hours per_ inch of thickness.”Every effort should be made to eliminate the invisible source of problems, namely,fabricating stresses.Mold cavities can be produced by a variety of processes. The process to be used is Determined.First of all by the lowest cost at which the cavity can be produced for the desired end result. Other factors include precision of repairability. Frequently, a combination of processes is employed in order to meet all the specified requirements. The most common processes are discussed in the following sections. Specifically, investment casting may be considered for applications where the number of cavities is greater than six and tolerances of dimensions are in the range of 0.005. It is particularly adaptable to complex shapes and unusual configurations as well as for surface that are highly decorative and difficult to obtain by conventional processes. These decorative surface may have a wood grain, leather grain, or textured surface suitable for handle grips,etc.A lmost any alloy of steel or beryllium copper alloys can be cast to size and heat-treated metal hardness that is within the range of the alloy being cast. Acomparative cost evaluation will in many cases favor the investment process. The investment cast tooling when produced by qualified people can be of the same quality as those machined from bar stock., i.e.,they can be free of porosity, proper hardness, uniform with respect to each other, and where (and-where)the time element is a factor-can be produced in days instead of weeks. In this process, cavities have been made that weigh as much as 750 lb.The investment caqsting method calls for a model of a low-melt material such as wax, plastic, or frozen mercury. The model is a reproduction of the desired cavity block and, when cast, is ready for mounting in the base. It incorporates shrinkage allowances as well as a gating system for metal pouring. The complete model is sipped in a slurry of fine refractory material and then encased in the investment material, which may be plaster of paris or mixtures of ceramic materials with high refractory properties. With the encased investment fully set up, the model is removed from the mold by heating in can over to liquefy the meltable material and cause it to run out. The molten material is reclaimed for further use. The mold or investment casing is fully dried out during the heating. After these steps, the investment is preheated to 1000to 2000F in preparation for the pouring of the metal. The preheat temperature is governed by the type of metal. When pouring is completed and solidification of the metal has taken place, the investment material is broken away to free the casting for removal of the gates and cleaning.The making of the model for cavity and core blocks of meltable material is an intermediate step. These model blocks are cast in molds that are the staring point for the process. The starting-point mold consists of the part cavity or core where the parting line width as well as block portin for mounting, etc., are built around the part cavity and core, and thus form the shape needed as the complete block.The investment-casting process was developed commercially to a high dehree of precision and quality during World War II for the manufacture of aviation gasturbine blades were made of alloys, which were difficult or impossible to be foged. Subsequently, refinements have been developed in the investment-casting process that are especially valuable to the moldmaking field. Most these improvements are in the area of investment materials for the pyrpose of maintaining closer tolerances on the castings. Some mold shops have equipped themselves with the ability to produce investment castings alongside their regular fabrication facilities.3、 Feed SystemIt is necessary to paovide a flow-way in the injection mould to connect the nozzle of the injection machine to each impression. This flow-way is termed the feed system. Normally the feed system comprises a sprue, runner and gate. These terms apply equally to the flow-way itself, and to the molded material which is removed from the flow-way itself in the process of extracting the molding. 1、SprueA spure is a channel though which to transfer molten plastic injected from the nozzle of the injector the mold. It is a part of spure bush, which is a separate part from th mold. 2、RunnerA runner is a channel that guides molten plastic into the cavity of a mold. 3、GateA gate is an entrance through which molten plastic enters the cavity. The gate has the following functions:restricts the flow and the direction of molten plastic;simplifies cutting of a runner and moldings to simplify finishing of parts;quickly cools and solidifies to avoid backflow after molten plastic has filled up in the cavity. 4、Cold slug wellThe purpose of the cold slug well, shown oppwsite the sprue, is theoretically to receive the material that has chilled at the front of the nozzle during the cooling and ejection phase. Perhaps of greater importance is the fact that it provides positive means whereby the sprue can be pulled from the sprue bush for ejection purposes. The sprue, the runner, and the gate will be discarded after a part is complete. However, the runner and the gate are important items that affect the quality or the cost of parts. 4、 Parting SurfaceThe parting surfaces of a mould are those portion of both mould plates, adjacent to the impressions, which butt together to form a seal and prevent the loss of plastic material from the impression. The parting surface is 1、classified flat and non-flatThe mature of the parting surface depends entirely on the shape of the component. A further consideration os that the parting surface must be chosen so that the molding can be removed from the mould. Many molding are required which have a parting line which lies on a non-planar or curved surface. When the parting surface os not flat, there is the quertion of unbalanced forces to consider in certain instances. The plastic material when under pressure within the impression, will exert a force which will tend to open the mould in the lateral direction. If this happens some flashing may occur on the angled face. The movement between the two mould halves will be resisted by the guide pillars, but even so, because of the large forced involved, it is desirable to balance the mould by reversing the step so that the parting surface continues across the mould as a mirror image of the section which includes the impression. It is often convenient to spercify an even number of impressions when considering this type of mould, as impressions positioned on opposite sides of the moulds centre-line serve to balance the mould. 5、 Mould coolingOne fundamental principle of injection molding os that hot material enters the mouls, where it cools rapidly to a temperature at which it solidified sufficiently to retain the shape of the impression. The temperature of the mould os therefore important as it governs a portion of the overall molding cycle. While the melt flows more freely in a hot mould, a greater cooling period is required before the solidified molding can be ejected. Alternatively, while the melt solidifies quickly in a cold mould it may not reach the extremities of the impression. A compromise between the two extremes must therefore be accepted to obtain the optimum molding cycle. The operating temperature for a particular mould will depend on a number of factors which include the following:type and grade of material to be molded;length of flow within the impression;wall section of the molding;length of the feed system, etc. It is often found advantageous to use a slightly higher temperature than is required just to fill the impression, as this tends to impreove the surface finish of the molding by minimizing weld lines, flow marks and other blemishes. To maintain the required temperature differential between the mould and plastic material, water or other fluid is circulated through holes or channels within the mould. These holes or channels are termed flow-ways or water-ways and the complete system of flow ways is termed the circuit. During the impression filling stage the hottert material will be in the vicinity of the entry point, i. e. the gate, the coolest material will be at the point farthest from the entry. The temperature of the coolant fluid, however, increases as it passes though the mould. Therefore to achieve an even cooling rate over the molding surface it is necessary to locate the incoming coolant fluid adjacent tohotmolding surfaces and to locate the channels containingheatedcoolant fluid adjacent to coolmolding surfaces. However, as will be seen from the following discussion, it is not always practicable to adopt the idealized appreach and the designer must use a fair amount of common sense when laying out coolant circuits if unnercessarily expensive moulds are to be avoided. Units for the circulation of water and other fluids are commercially available. These units are simply connected to the mould via flexible hoses, with these units the moulds temperature can be maintained within close limits. Close temperature control is not possible using the alternative system in which the mould is connected to a cold water supply. It is the mould designers responsibility to provide an adequate circulating system within the mould. In general, the simplest systems are those in which holes are bored longitudinally through the mould plates. However, this is not necessarily the most dfficient method for a particular mould. When using drillings for the circulation of the coolant, however, these must not be positioned too close to the impression say closer than 16mm as this is likely to cause a marked temperature66variation across the impression, with resultant molding problems. The layout of a circuit is often complicated by the fact that flow ways must not be drilled too close to any other hole in the same mould plate. It will be recalled that the mould plate has a large number of holes or recessers, to accommodate ejector pins, guide pillars, guide bushes, sprue bush, inserts, etc. How close it is safe to position in a flow way adjacent to another hole depends to a large extent on the depth of the flow way driolling required. When drilling deep flow ways there is a tendency for the drill to wander off its prescribed course. A rule which is often applied is that for drillings up to 150mm deep the flow way should not be closer than 3 mm to any other hole. For deeper flow ways this allowance is increased to 5 mm. To obtain the best possible position for a circuit it is good practice to lay the circuit in at the earliest opportunity in the design. The other mould itens such as ejector pins, guide bushes, etc. , can then be positioned accordingly. 6、 Designs CAD/CAMAlthough CAD/CAM manufactures and suppliers are addressing the challenges mold disigners face when using software, these designers are still grappling with a number of issues. Kevin Crystal, senior quality engineer with The Protomold Co. (Maple Plain, MN)-a rapid injection molding company-reports that the greatest challenges he faces are with file translation and creating drafted surfaces. IGES, STIP, etc. are imperfect tools as implemented by various CAD packages, he explains, Some packages create horrible models, some are so-so, and some are pretty reliable , but none that I know of are perfect. Also, draft cause subtle changes in faces, and if you dont understand what is happening one of two things will happen:your CAD package if its good will till you itcant create the draft, or your CAD package woll create geometry that has internal faces, hairline cracks or other defects. Adequate training is a problem that Jack Mason, general manager Unity Mold LLC-a provider of precision molds used for molding ezotic materials such as stainless stiil and ceramic, and fixtures associated with the various secondary processes-faces. He also finds retraining as a result of equipment/software evolution a challenge. Excellent technical support tops the trios list of what to look for in a supplier. Accu-Molds Holby also wants up-to-date information and his phone calls returned in a timely manner. Mason of Unity Molds also wants his response time quick-and qualified. Although not specifically a CAD/CAM challenge, offshore cimpetition is probably the number challenge faced by moldmakers today-especially offshore suppliers. As a result, domistic moldmakers need to capitalizi on values other than lower cost molds they bring to their customers-such as quick turnaround, mold quality and product/process consulting. Todays CAD/CAM software supports moldmakers efforts in each of these areas. Also, as the workforce continues to age and retire, the experience level represented by that workforce diminishes. CAD/CAM systems are beginning to incorporate knowledge-based technology that can be used to capture employees expertise so that it can be referenced and reapplied. Though curredtly the level of information captured is still fairly simple, it represents a valuable asset for most manufacturers. In the past, mold, tool and die work often required selecting a CAM system that did a very good job of machining cavities and cores-but was unable to machine the various aspects of mold bases, like slots, channels, coolant lines, ejector and alignment pins. The moldmaker would have to fumble around trying to machine these aspects CAM system. More and more CAM systems are developong broad functionality to be able to handle moldmakings broad machining requirements.Due to time pressures, many shops just dont have the time to explore all the tools that the software they own already provides. In many cases, software tools that could dramatically affect tumaround time go unused becaude the user simply doesnt have the time to learn them.Often these unused tools complement what a shop already does, making the process much more efficient. An example is automated feedrate optimization-a feature that may already be in your software. This technology benefits the user in many ways. For instance, it can save on wear and tear on the equipmint, provide a better surface finish, and optimize the feedrati to maximizethe utilization of the machine tool. Ultimately, the real value can be measured in dollars by reducing the time it take to machine the mold.HSM combines high feedrates with high spindle speeds, specific tools and specific tool motion-delivering faster turnaround and a superior finish. Feedrate optimization lets users run that same job at the most efficient varying feedrates, saving even more time tool wear and money. To make sure you are maximizing your software investmint, rely on your local reseller who sold you the software. They are there to help you make the most of the software you purchased. A good reseller can quickly give you guidance and point you in the right direction. To be successful in this highly competitive environmint, moldmakers need to invest in establishing the most efficient and effective processes, and remove bottlenecks form their operations before they look into which software to use. Image courtesy of Cimatron.The second major challenge is getting to a point when cores, cavities and electrodes can be machined. Companies can only machine so fast and the design of these components in 3-D is where time can be cut in the overall process.All existing toolpath generators drive tools into corners where the tools engage-ment with the material-and consequently the machining load-rises dramatically. To compensate for this, programmers are forced to use smaller stepovers, shallower depths-of-cut, slower spindle speeds and slower feedrates in some combination. This, of course, results in extended ma-chining time, and therefore higher costs.First, enrure systems can handle translated geometry. The reuse of imported data is a critical part of the process. Systems have to be able to reuse data that may not be created to the same level of tolerance as in theirsystem-allowing for small mathematical errors without causing modeling or manufacturing systems to struggle. The ability for the system to repair geometry with topological problems is an important tool to improve productivity in the process. Steer your CAD/CAM investmints toward open solutions. CAD/CAM systems that are based on a common geometric modeling engene can share geomitry with 100 percent compatibility and no data translation. Another area of advancement that is tightly connected to CAD/CAM that is increasingly critical for moldmakers is in the area of tools that support collaboration. . The majority of mold design and manufacture is undertaken by sub-contractors-often in locations remote from the product OEM. Support for the interaction between the OEM, the mold designer, the moldmakers, and cost control. often this has been poorly supported, with basic means of data transfer and only crude means to review issues, designs and models on a real time basis. This is changing. The CAD/CAM software plays an important role in this scenario. Moldmakers will need to increasingly CAD/CAM packages not only able to keep up with the technological adcancemints of connected sectots (e. g. . , machine tools), but also able to promote themselves as adopters of new technologies. Taking advantage of leading dege technology is vital. Again, specialization is crucial. The moldmaking process is a very specific one, but at the some time is a large puzzle made of many pieces:data import, analysis, 3-D design, 2-D plot views, two-to five-axis milling, wire EDM, plunge EDM and data export. We believe that the challenge can be tackled-and won-via choosing a CAD/CAM supplier with a proven experience in the entire process, including developing leading-edge technologies as well as providing excellent customer support. In this regard, an efficient technical support to the customers is of paramount importance to establish a virtuous circle: only a deep knowledge of the daily needs of the users can drive the research and development in the right direction. Thus, when selecting a CAD/CAM vendor, make sure you find one who takes the time to understand the unique challenges your shop faces and is willing to work closely with you to find the right processes for your shop. Your vendor should keep in close contact with you to ensure the latest equipment-as well as machining techniques-is readily acailable. Making the right CAD/CAM investment is crucial to overcoming design challenges to provede your customers with the shortest leadtimes. 7、 Treating and the modern mould make high speed At present, adopt quick-cutting to produce a mould already becoming the general trend that the mould makes, a few moulds have produced a manufacturer in abroad , high-speed machine tool large area has substituted the electric spark machine tool , quick-cutting has improved the mould efficacy greatly. Machine tool enterprise aims at mould manufacturing enterprises , some treating centres 60% all above of the machine tool producing a factory sells treating enterprise to a mould. The mould fabrication enterprise substituting the electric spark finish machining mould gradually in abroad has adopt quick-cutting already commonly , quick-cutting has produced a mould already becoming the general trend that the mould makes gradually , has improved the mould efficacy and mass greatly. Adopt quick-cutting to replace electric spark producing a mould , can get on the stick obviously , improves mould accuracy , life time growing.1. high speed processes application in making in the mould(1)quick-cutting merit: 1) cutter high rotation rate and the machine tool height enter be given to and high acceleration , improve metal excision rate greatly; 2) quick-cutting diminutions cut a force; 3) quick-cutting heat major part generate heat from the cuttings entrainment , workpiece being short; 4) quick-cutting cut down vibration , improve treating mass;(2)high speed treating apply to the beneficial result that the mould processes 1) fleetness rough process and half finish machining, improve treating efficiency; 2) high speed high-accuracy finish machining replace only entire the height processing , indicating mass , form accuracy rise , 50%, cuts down repair a mill by hand than EDM processes a potentiation; 3) cuts the surface processing final molding stiffly , improve surface mass , form accuracy, the treating (not only being that surface harshness is low, and the surface radiance is high) , being used for complicated surface has more advantage; 4) the surface loss that EDM treating produces , improve mould life-span 20%; 5) processes an electrode rapidly combining with the CAD/CAM technology , especially, the form is complicated , thin-wall is similar to an electrode.(3)adopt quick-cutting to process a mould needing the problem solving In in the homeland, since the aspect cause such as fund , technology , the quick-cutting applying produce a mould be in the initial stage stage. Return the machine tool , cutter , handicraft back to existence as well as some problem of aspect needs to proceed orderly other solve.The shortcoming is that finished cost is high, correct cutter sigmatism have comparatively high demand, can not have used big cutters , need to have the complicated computer programming technology to be used for support , equipment running cost height.2. the high speed processing a moulds processes a machine tool Mould finish machining and hard cutting treating require that the numerical control high-speed machine tool , form board , model put up the precision processing need , high-effect numerical control machine tool etc.The mould aiming at produces a lot of machine tool enterprise , some treating centres 60% all above of the machine tool producing a factory sells enterprise to a mould. The fixed assets having 5 billion yuan without exception in the upcoming several years throws into mould industry , 80% is the machine tool buying a mould process equipment , just saying every year having 4 billion yuan of RMB to buy Jinqie among them. At present average our country numerical control machine tool utilization ratio approximately 20%, the high-speed machine tool utilization ratio 3 5%. Also, mould enterprise has the unit suitable to buy a high-speed machine tool , complies with 6000 40000 rmps to have. (1) high-speed machine tool technology parameter demands Process centre chief axis high-power , high rotation rate , satisfied rude finish machining; The finish machining mould wants to need to reach 15000 20000 rmp like the cutter , the machine tool with minor diameter. Generally, the chief axis rotation rate machine tool under 10000 rpm can carry out rough process and half finish machining , cannot reach the finish machining accuracy; Have no way to reach 400 the above m/min cutting speed. (2)five scrolls of machine tools application increases a trend 1) treating route is nimble , the surface form is complicated; 2) treating range is big , the various type mould suitable processes; 3) cuts life-span of condition easy to cut down cutter wear , to raise a cutter,; (3) the softwares buying CAD/CAM and high-speed machine tools assortOn the grounds of the machine tool , major part counting , having several billions U. S. dollar to be used to enter port every year, the electromachining machine tool and the high-speed machine tool need to import.3.quick-cutting mould cutter technology Quick-cutting processes the cutter needing allocating proper quick-cutting. Progressing processing cutter materials in high speed has urged development of high speed treating. The cutter , knife edge headquarter and high tenacity base gathering crystal strengthening the ceramics cutter being able to be used giving consideration to high hardness experience and observe carbide alloy coating becoming possibility. Gather the crystal cube nitriding boron (PCBN) bit, whose hardness may amount to 3500 4500 HV. Gather crystal miamond (PCD) its hardness but amount to 6000 10000 HV. Germany SCS , Japan Mitsubishi (magical steel) and Sumitomo , Switzerland Shanteweike , USA Kenna are in recent years swiftly large wait for the famous abroad cutter company to successively have debuted the respective quick-cutting cutter, not only cutter having average structural steel of quick-cutting, the ceramics cutter still having direct quick-cutting of energy quenching hard steel is waiting for an effect to surpass the hard cutter, especially the coating cutter appears all of a sudden , bringing into play in quenching half finish machining and finish machining of hard steel. New cutter material and cutter technology appearing already make the bottleneck problem that high speed has processed no longer be able to appear on the cutter. But, expensive entrance cutter price also blocks quick-cutting mould key factor. Above to come to saying the cutter and the cutter holder acceleration reach 3 gs the sort, the cutter circular runout needs to be smaller than 0.015 mm, but the knife length is unable greater than 4 times cutters diameter. The reality according to SANDVIK company has counted , the carbide alloy has stood on in the entirety using carbon nitriding titanium (TICN) coating when milling cutters (58 HRC) carry out high speed bright metal chopping , rough process cutter linear speed has been 100 m/min about , whose linear speed has exceeded but 280 m/min when finish machining and microstoning. Such demands to cutter material (include the hardness , tenacity , red hardness keep the form (include row of crumbs function , surface accuracy , dynamic balance sex etc. (cutting the function) , the cutter under high temperature state) as well as cutter life-span all has very highly. Experience according to in the homeland mould high speed finish machining, linear speed has exceeded 400 800 m/min when adopt the young diameter ball head milling cutter to carry out mould finish machining. The machine tool choosing sufficient high-speeds cuts mould finish machining stiffly. Delcam adopt 0.8 mm diameter cutter to process the narrow slot , rotation rate 40000 rpm , 0.1 mm depth, feed speed 30 m/min. (1) chooses the cutter parameter , the cutter waits if shouldering an anterior angle. The cutter requires that the ability processing request shock resistance tenacity more highly , requiring that heat resistance pounds than average is strong; (2) adopts various method improving cutter life-span , reduces cutter cost. (3) adopt the high speed hilt , HSK hilt , heat pressing applying the most being at present to pretend to grip a cutter. Pay attention to a cutter pretend to grip overall in the day afer tomorrow dynamic balance; (4) current
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:圆形筛盖注塑模具设计【全套含CAD图纸、说明书】
链接地址:https://www.renrendoc.com/p-56333800.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!