




免费预览已结束,剩余4页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2007年4月第44卷第2期四川大学学报(自然科学版)JournalofSichuanUniversity(NaturalScienceEdition)Apr.2007Vol.44No.2文章编号:049026756(2007)0220284205剪切力环境下的血管平滑肌细胞图像分割技术研究李晓宁1,樊瑜波2,3(1.四川师范大学计算机科学学院,成都610068;2.四川大学建筑与环境学院生物力学所,成都610064;3.北京航空航天大学生物工程系,北京100083)摘要:定量分析血管平滑肌细胞VSMCs(VascularSmoothMuscleCells)在剪切力作用下的形态变化有助于理解VSMCs的生长机制以及病理学研究.图像分割在图像分析中扮演着重要角色,但同时也是图像处理流程中最困难的步骤.针对培养在平板流室中的VSMCs相互交叠的细胞图像,作者首先分析了这类细胞图像的特征,随后提出了一种具有四个步骤的图像分割方法,分别是图像预处理、照明校正、数学形态学重建和分水岭转换.实验结果证明,按照这种方法分割细胞图像,取得了较好的效果.关键词:定量分析;分水岭转换;数学形态学;图像分割中图分类号:TP751文献标识码:ACellsegmentationofvascularsmoothmusclecellsundershearstressusingimageprocessingLIXiao2ning,FANYu2bo12,3(1.CollegeofComputerScience,SichuanNormalUniversity,Chengdu610068,China;2.BiomechanicalEngineeringLaboratory,SichuanUniversity,Chengdu610064,China;3.BioengineeringDepartment,BeihangUniversity,Beijing100083,China)Abstract:Quantitativelyanalysisofthemorphologicalresponsetoshearstressonvascularsmoothmusclecells(VSMCs)willfacilitateunderstandingthegrowthmechanismandpathologyofVSMCs.Imagesegmentationplaysakeyroleinimageanalysisandisalsothemostdifficultstepinimageprocessingpipeline.Inthispaper,firstly,thecharacteristicsoftheimagesofVSMCsculturedintheparallelplatechamberisanalyzedindetail,thenonesegmentationstrategywhichhasfourstepsbasedonwatershedoperatorsisproposed.Imageprepro2cessing,illuminationcorrecting,mathematicalmorphologicalreconstruction,watershedtransformationareimplementedaccordingtothesetsequence.Theresultshowsabetterseparationcellsfrombackgroundcanbeachievedbyusingthismethod.Attheendtheresultofimagesegmentationisanalyzedanddiscussed.Keywords:quantitativelyanalysis,watershed,mathematicalmorphology,imagesegmentation收稿日期:基金项目:作者简介:通讯作者:2006210229国家自然科学基金(10527001,10672105);北京R&D项目(H060920051030);四川师范大学基金李晓宁(1972-),男,博士,主要研究方向为医学图像处理.樊瑜波.E2mail:第2期李晓宁等:剪切力环境下的血管平滑肌细胞图像分割技术研究2851IntroductionCellularmechanicsisafocusofnowadaystissueengineeringstudy.Investigationsintotheeffectsofflowonvascularsmoothmusclecells(VSMCs)aremotivatedbythepossibleinfluenceofflowinvascu2larbiologyandpathobiology.Todeterminetheex2tentoffloweffects,studiesinwhichthefluidme2chanicconditionscanbesystematicallyvariedareneeded.Invivostudyisdifficulttoquantitativelydefinethedetailedcharacteristicsofthehemody2namicenvironment.Exertingmechanicalforcethroughvariouskindsofmechanicsdevicesonlivingcellsinvitroisthemainmethodofcellmechanicsnow.Mechanicalstimuli,suchasstrainandfluidshearstress,arebelievedtobekeyfactorsinregu2latingcardiovasculartissuegrowthandremodelingduringdevelopmentandindiseasestates.Shearstressesonvascularsmoothmusclecellsduetobloodfluidflowplayavitalroleinregulatingtheirmor2phology,structure,growthrateandfunctions.Thechangeinmorphologyisaninstinctiveresponsetobiomechanicalenvironmentandisanindicatorforthefunctionalchangesinthecells.Quantitativelyanalyzingcellmotilityandmorphodynamicproper2tiesfacilitatesunderstandingtherelationsbetweenmechanicalstimuliandmechanismsofcellpathologi2calchanges.Itisnecessarytobuildadigitalimageprocessingsystemwiththeaidofelectronictech2nologiesandimageprocessingforthistarget.Howtoexactlyandaccuratelysegmentcellsfromimagesisthemajorproblemwiththeimageprocessingsys2tem.Imagesegmentationisoneofthehotspotsanddifficultstepofimageprocessingtechnology.Uptonowthousandsofmethodsofimagesegmentationhavebeenpresented.Butunfortunatelythereisnomethodappreciatedforeachkindofimagesegmen2tationproblems.Althoughsomealgorithmsarepro2posedfordyeingandfixingcellimagesegmentationtheyareunsuitablefortheimagesofbiologicalactivecells.Intheexperimentsofcellularmechanicsthematerialsoftenmustbekeptaliveandcouldnotbeendyed.Livingcellsaretransparentandtheirimagepropertiesvarywithexperimentalconditions.Theseallinducethedifficultiesfortheimagesegmenta2tion.Sodevelopingthesegmentationstudiesfortheimagesoflivingcellsculturedinthemechanicalen2vironmentisveryimportant.Thisarticleexploresthetechnologiesofimagesegmentationofvascularsmoothmusclecells(VSMCs).2Materialsandmethod2.1CellcultureVascularsmoothmusclecellswereobtainedfromrataortaaccordingtoageneralmethodusedinmedicine.Aninnovativeparallelplateflowchambersystemisusedtoculturethesecollectedcellsandtodeliverquasi2physiologicalpulsatileflowfieldforcul2turedvascularcells1.2.2ImageacquiringsystemImageacquiringsystemconsistsofaphasecon2trastinvertedmicroscope(OlympusIX70,Japan),aprofessionalmicroscopyCCD(PixeraPro150ES,USA)andapersonalcomputer.AnalogcellimagesobservedbyOlympusIX70microscopeareconvertedtodigitalimagesthroughthevideooutputcompo2nent,andthesingleporttube(IX2SPT,Japan),aCmountandPixera150ESdigitalCCD.Atlastimagesarecapturedintocomputersystems.DiagramofourimageacquiringsystemisshownasFig.1.Fig.1DiagramoftheimageacquiringsystembasedonprofessionalmicroscopyCCD2.3CharacteristicsofvascularsmoothmusclecellimagesBeforesegmentationstrategyisdetermined,studyingthecharacteristicsofcellimagesisneces2sary.Generally,cellsimagespresentintwoclassicalmodes.Oneisoverlappedandtheotherisnon2over2lapped.Fornon2overlappedcellsimage,onemethod286四川大学学报(自然科学版)第44卷isintroducedinouranotherpaper2.Asfortypicaloverlappedcellsimages,thereareseveralnotableandcommoncharacteristics.(1)Fromthewholeimage,thecontrastofintensitiesbetweenthecellsareaandthebackgroundislow.Althoughtherearesomehalationbetweencellsandbackground,thein2tensitiesofhalationisnotconstantandtheshapeofhalationisnotregular.(2)Theboundariesofthecellsmaybeextremelydifficulttodefineduetothevariationsofcellmorphology.(3)Manyholeslieinthebodyofcell.Andsotheintensitiesofsomeareasofcellbodyareidenticaltothoseofbackground.(4)Cellsaregrowinginoverlappingmode.Andthisconducesenormouslyimpedimentforseparatingcellsfromtheimages.2.4SegmentationStrategyObviously,itisimpossibletoaccuratelydistin2guishthecellboundaryfromthebackgroundonlybysimplemethods.Wementionthatwatershedisuse2fultoseparateoverlappingobjectsfromthescene.Sowedevelopthispipeline(Fig.2)tocompletethesegmentationtaskasfollows.Fig.2Illustrationoftheappliedimageprocessingpipeline2.4.1ImagepreprocessingInputimageisfirstlyenhancedbyaself2multiplemethod.TheRGBval2uesofeachpixelaremultipliedbythemselvesindi2viduallyandtheproductsarerespectivelynormalizedwithintherangefrom0to255.Thenormalizedval2ueisthenewintensityofthepixel.Thisprocedureisdonepixelbypixelandthengreytransformationisusedforeachpixeloftheconsequentimage.ThegrayscaleimageisshowninFig.4(a).2.4.2CorrectinginhomogeneousilluminationAlargenumberofexperimentfactorscancauselight2ingtobeeven,soinhomogeneousilluminationisacommonprobleminquantitativemicroscopy.Addi2tiveilluminationinfluencescanbenormalizedbyre2movinglocalmeansorutilizingderivativesforobjectdetecting3.However,inthecaseofdiascopicmi2crographsthereisamultiplicationrelationshipbe2tweenthemainlyhigh2frequencycellobjectinforma2tionandratherlow2frequencyvariationsofillumina2tion.Logarithmicimagemodelissuitableforremov2ingmultiplicativeilluminationcomponents.Thisre2lationcanbeexpressedasF(x,y)=(g-A(x,y)3I(x,y)WheretheimagefunctionF(x,y)isregardedastheintensityoflightpassingthroughalightab2sorbingsample.A(x,y)andI(x,y)denotetheabsorptionandmicroscopeillumination,respective2ly.Theconstantgrepresentsthemaximumdigitalintensityvalue,whichis255for82bitimages.Inthelogarithmicdomain,itcanbedescribedasA(x,y)=g-exp(logF(x,y)-log(I(x,y)AccordingtotheworkofVolkerMetzleretc.4,morphologicalilluminationcorrectionhasmanyadvantagesoverlinearlow2passfiltering.TheirmethodillustratedinFig.3isusedtocorrecttheinhomogeneousilluminationwedealwithandgoodresultisobtained.Onedifferencefromtheirmethodsisthesizeofstructureelementthatweadoptinmorphologicalreconstructionstep.Wehavementionedthatinourcapturingconditionsthesizeofcellbodyisalwayssmallerthan50pixels,soweFig.3Flowchartoftheilluminationbymorphologicalmethod第2期李晓宁等:剪切力环境下的血管平滑肌细胞图像分割技术研究287Fig.4Resultimages(a)Graytransformation,(b)Illuminationcorrectionbymorpho2logicalmethods,(c)Morphologicalreconstruction,(d)Distancetransformationfor(c),(e)Markerimagebydomeextraction(h=4),(f)Overlayingmarkerimageondistanceimageerodetheimageusingstructureelementwhichsizeis25pixelsandconsequentlythecellularpixelinfor2mationiserased.Thenwereconstructtheimagebygeodesicdilationandcangetanimageconsistingofmostbackgroundinformation.Ifwereducetheo2riginalimagewiththisconsequentlyone,wecanob2tainanimagethatonlyincludescellbodies.Theob2tainedimageisshowninFig.4(b).AsshowninFig.4(b),althoughcellbodiesareseparatefrombackground,therearesomeback2groundareasarealsoretainedwhichisnotwanted.Soweutilizeanothermorphologicalreconstructionoperatortoeraseallthebackgroundareas.Differentfromlaststep,thisreconstructionoperatorisappliedtorestorecellbodyinformationandtogetridofbackgroundcomponentornoise.Becausecellsareconjointtogetherandbackgroundareaornoiseisin2solate,wecanerodetheimagewithlargestructureelementandtheobtainedimageislookedasmakerimagewhichsignallthecellareas.ReconstructiontheimageshowninFig.4(b)usingthismakerim2age,canclearupallthebackgroundandnoise.TheobtainedimageisshowninFig.4(c).Inthisimageonlycellareasarepresented.2.4.3WatershedtransformationAlthoughthebackgroundandnoisearealleliminated,cellsareoverlappedanditisnecessarytoseparatethemfromeachother.Watershedtransformationiseffectiveforsolvingthiskindofproblems,butinfact,thebrutalcomputationofwatershedsdoesnotconstituteagoodsegmentationmethod.Indeedthesimplecom2putationofanimageswatershedsmostlyresultsinanover2segmentation.,i.e.,thecorrectcontourslostinamassofirrelevantones.Inordertogetridofthisover2segmentation5,onemustmaketwopreparations.Oneistransformingoriginalimagetogradientoneordistanceone,whichwillbeinputimageofwatershed.Weusedistanceimagethoughdistancetransformationasinputimageofwater2shed.ThecorrespondingdistanceimageisshowninFig.4(d).Theotherisextractingmakerpointswhichsignobjectstobedissected.Universallyonemakerpointindexesoneobject.Onehastousetheknowledgeavailableontheproblemtodesignaro2bustalgorithmforextractingmarkersofdifferentre2gionstobesegmented.Inthispaper6,h2dometransformationispresentedanditisverifiedthath2dometransformationcanextractlightstructureswithoutinvolvinganysizeorshapecriterion.Theonlyparameter(h)isrelatedtotheheightofthesestructures.Wedesignadometransformationwhichparameter(h)isequalto4andutilizeittogetmarkerpointsfromdistanceimage.Aftersuperpos2ingthemakerimage(Fig.4(e)withFig.4(d)andthenreversetheconsequentimagewecangetimageasshowninFig.4(f).Watershedoperatorisappliedtothisimage(asFig.4(f).TheresultisshownFig.5(a).3ResultsanddiscussionAsshowninFig.5(a),thesegmentationlinesarepresentedinmanyconjunctionofcellbound2aries.Wecanlabelthesegmentedimageandgetthecontoursofcellbodyusingotherimageprocessingtechniques.Hence,quantitativeanalysiscanbesuc2ceeded.288四川大学学报(自然科学版)第44卷Fig.5Resultsofwatershedsegmentationwithdifferentmakerimages(a)h=4;(b)h=3;(c)h=5Asawhole,thelocationsofsegmentationlinesarecoincidentwiththeintuitionofthehumaneye2whendomeheightequalsto4.Butsomewhereseg2mentationlineslocateincongruously.Becausetheaccurateofwatershedseparationmethodseriouslydependsonthemakerimage,wetriedthreeheightsofdomewhichareparameterh=3,4,5,respec2tively.TheresultsareshowninFig.5(b),Fig.5(a),Fig.5(c).Itisevidentthatover2segmentationispresentedath=3andsomecellarenottotallyseparatedatborderath=5.Comparedwiththem,theresultisbetterath=4.Reference:1ZhuangFG.Recentad
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 食品生产员工培训
- 消防安全培训与演练记录课件
- 会议进展情况汇报
- 医学生寒假社会实践汇报
- 党史宣讲活动专题策划
- 消防安全公益培训文案课件
- 消防安全专项培训流程课件
- 赵州桥预习课件
- 走进草房子课件
- 走进欧洲的课件
- 2025年江苏省苏州市中考英语真题(原卷版)
- 2025-2030船用内燃机行业发展分析及投资价值研究咨询报告
- 《新编日语泛读教程学生用书1》课件-新编日语泛读教程 第三册 第1课
- JG/T 26-2002外墙无机建筑涂料
- 护理实习生安全协议书10篇
- 九年级英语情境教学实施计划
- 巨人的陨落介绍课件视频
- 无人机测量课件
- 2025年全国网络安全知识竞赛题库及答案(共255题)
- 党务工作论述知识课件
- 大中型企业安全生产标准化管理体系要求变化解读
评论
0/150
提交评论