




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四章 图形的相似7.相似三角形的性质(一)【授课教师】梅州市五华县梅林中学 陈旭标【授课内容】初中数学九年级上册(北师大版)第四章【授课地点】五华县梅林中学九(1)班【授课时间】2016年11月15日一、教学设计教学目标:1、经历探索相似三角形中对应线段比值与相似比的关系的过程,理解相似三角形的性质。利用相似三角形的性质解决一些实际问题.2、培养学生的探索精神和合作意识;通过运用相似三角形的性质,增强学生的应用意识.在探索过程中发展学生类比的数学思想及全面思考的思维品质.3、在探索过程中发展学生积极的情感、态度、价值观,体现解决问题策略的多样性.2、 教学过程第一环节:探究相似三角形对应高的比.引入语:在前面我们学习了相似三角形的定义和判定条件,知道相似三角形的对应角相等,对应边成比例。那么,在两个相似三角形中是否只有对应角相等、对应边成比例这个性质呢?本节课我们将研究相似三角形的其他性质.内容:探究活动一:(投影片)在生活中,我们经常利用相似的知识解决建筑类问题.如图,小王依据图纸上的ABC,以1:2的比例建造了模型房梁A/B/C/,CD和C/D/分别是它们的立柱。(1) 试写出ABC与A/B/C/的对应边之间的关系,对应角之间的关系。(2) ACD与A/C/D/相似吗?为什么?如果相似,指出它们的相似比。(3) 如果CD=1.5cm,那么模型房的房梁立柱有多高?(4) 据此,你可以发现相似三角形怎样的性质?生解:(1)= (2)ACDACDACDACD(两个角分别相等的两个三角形相似)= (3)=,CD=1.5cmC/D/=3cm(4)相似三角形对应高的比等于相似比目的:通过学生熟悉的建筑模型房入手,激发学生学习兴趣,层层设问,引发学生思维层层递进,从相似三角形的最基本性质展开研究.使学生明确相似比与对应高的比的关系.效果:通过层层设问,引导学生剥开问题的表面看到了相似三角形的性质:对应高的比等于相似比.第二环节:类比探究相似三角形对应中线的比、对应角平分线的比过渡语:刚才我们利用相似的判定与基本性质得到了相似三角形中一种特殊线段的关系,即对应高的比等于相似比,相似三角形中除了高是特殊线段,还有哪些特殊线段?它们也具有特殊关系吗?下面让我们一起探究:内容:探究活动二:(投影片)如图:已知ABCABC,相似比为k,AD平分BAC,A/D/平分B/A/C/;E、E/分别为BC、B/C/的中点。试探究AD与 A/D/的比值关系,AE与A/E/呢?ABCDE要求:类比探究,小组合作,至少证明其中一个结论.A/B/C/D/E/生1解:ABCABC B=B=kAD平分BAC,A/D/平分B/A/C/BADB/A/D/(两个角分别相等的两个三角形相似)=k 生2解:ABCABC B=B=k E、E/分别为BC、B/C/的中点=k=kB=BBAEB/A/E/(两边成比例且夹角相等的两个三角形相似)=k 小结:由此可知相似三角形还有以下性质.相似三角形对应角平分线的比和对应中线的比都等于相似比.目的:通过学生小组合作探究,类比前面探究过程,引发学生主动探究意识、培养合作交流能力,发展学生的类比的思维能力,与归纳总结能力.效果:学生通过合作探究,可以发现相似三角形中对应角平分线、对应中线的比等于相似比.内容:探究活动三:(投影片)过渡语:我们已经得到了相似三角形中特殊线段的关系,如果把角平分线、中线变为对应角的三等分线、四等分线、n等分线,对应边的三等分线、四等分线、n等分线,那么它们也具有特殊关系吗?下面请同学们独立探索以下问题:如图3-32,已知ABC A/B/C/,ABC 与A/B/C/的相似比为k.(1)若,则等于多少? (2)若,则等于多少?(3)你能得到哪些结论?生1(1)解:ABCABC B=B=kBADB/A/D/(两个角分别相等的两个三角形相似)=k 生2(2)解:ABCABC B=B=k =k=kB=BBAEB/A/E/(两边成比例且夹角相等的两个三角形相似)=k 生3(3)相似三角形对应角的n等分线的比和对应边的n等分线的比等于相似比.目的:有了前面探索的基础,学生完全有能力独立完成“变式问题”的探索,在探索过程中,发展学生类比探究的能力与独立解决问题的能力,培养学生全面思考的思维品质.效果:学生能够很顺利地完成探究活动,并能够通过类比的思想总结出相关结论.第三环节:学以致用(相似三角形的性质的应用)内容: 例1 如图4-32,AD是ABC的高,AD=h,点R在AC边上,点S在AB边上,SRAD,垂足为E. 当SR=BC时,求DE的长.如果SR=BC呢? 巩固练习: 1.已知ABCABC,BD和BD是它们的对应中线,=,BD=4cm,求BD的长.2.两个相似三角形中一组对应角平分线的长分别是2cm和5cm,求这两个三角形的相似比。在这两个三角形的一组对应中线中,如果较短的中线是3cm,那么较长的中线多长?3.如图,小强自制了一个小孔成像装置,其中纸筒的长度为15cm.他准备了一支长为20cm的蜡烛,想要得到高度为5cm的像,蜡烛应放在距离纸筒多远的地方? 目的:要求学生能用相似三角形对应高的比等于相似比的性质来解决生活与生产中的实际问题。增强学生的应用意识。效果:学生能够运用前面所学解决问题,培养学生能发现问题,能够利用相似三角形相关性质解决问题的能力。第四环节:课堂小结(初步升华所学内容)内容:师生互相交流相似三角形的性质定理及拓展结论,在方法上的收获。目的:本节课主要根据相似三角形的性质和判定推导出了相似三角形的性质:相似三角形的对应高的比、对应角平分线的比和对应中线的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中劳技课课件
- 高三诗歌鉴赏
- 高一军训课件
- 离婚协议书与房产转让及租金收益分配范本
- 知识产权保密及互联网广告合作合同
- 离婚程序中财产分割与子女抚养权法律援助合同
- 离婚抚养权争夺子女监护与财产分割合同范本
- 地产销售会议总结报告
- 企业文化建设中的员工沟通保障
- 提高组织效率课程推动计划
- 2025新村级后备干部考试题库(附含答案)
- 小微企业供应商管理制度
- 公共关系学教程 课件全套 胡百精 第1-16讲 现代公共关系的诞生与职业化- 公关伦理与企业社会责任
- 联通标志设计专业
- 技工培训机构管理办法
- 学校意识形态工作培训会
- 儿童社区获得性肺炎诊疗规范(2025版)
- 氨站培训课件
- 护理神经内科个案:一例阿尔茨海默病患者的个案护理
- 【课件】跨学科实践:制作简易热机模型(教学课件)2025-2026学年初中物理人教版(2024)九年级全一册
- 基于Spring Boot的服装店铺管理系统论文
评论
0/150
提交评论