某药筒尺寸自动测量设备开发测量部件设计【含 图纸和文档全套】【LB6】

某药筒尺寸自动测量设备开发测量部件设计【含 图纸和文档全套】【LB6】

收藏

资源目录
跳过导航链接。
压缩包内文档预览:

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

【温馨提示】=【1】设计包含CAD图纸 和 DOC文档,均可以在线预览,所见即所得,dwg后缀的文件为CAD图,超高清,可编辑,无任何水印,充值下载得到【资源目录】里展示的所有文件=【2】若题目上备注三维,则表示文件里包含三维源文件,由于三维组成零件数量较多,为保证预览的简洁性,店家将三维文件夹进行了打包。三维预览图,均为店主电脑打开软件进行截图的,保证能够打开,下载后解压即可。=【3】特价促销,拼团购买,均有不同程度的打折优惠,详情可咨询QQ:1304139763 或者 414951605=【4】 题目最后的备注【LB6系列】为店主整理分类的代号,与课题内容无关,请忽视
编号:56565765    类型:共享资源    大小:4.10MB    格式:ZIP    上传时间:2020-03-12 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
含 图纸和文档全套 LB6 某药筒尺寸自动测量设备开发测量部件设计【含 图纸和文档全套】【LB6】 药筒 尺寸 自动 测量 设备 开发 部件 设计 图纸 文档 全套
资源描述:

【温馨提示】====【1】设计包含CAD图纸 和 DOC文档,均可以在线预览,所见即所得,,dwg后缀的文件为CAD图,超高清,可编辑,无任何水印,,充值下载得到【资源目录】里展示的所有文件======【2】若题目上备注三维,则表示文件里包含三维源文件,由于三维组成零件数量较多,为保证预览的简洁性,店家将三维文件夹进行了打包。三维预览图,均为店主电脑打开软件进行截图的,保证能够打开,下载后解压即可。======【3】特价促销,,拼团购买,,均有不同程度的打折优惠,,详情可咨询QQ:1304139763 或者 414951605======【4】 题目最后的备注【LB6系列】为店主整理分类的代号,与课题内容无关,请忽视

内容简介:
60 30 3.30 8 55 70 20 2 导杆气缸替代版本审核工艺比例质量第 张共 张 阶 段 标 记批准标准化主管设计年 月 日签名更改文件号分区处数标记设计校核零件代号借(通)用件登记旧底图总号底 图 总 号 日 期1:21BADCBA 签 字25436642513 20 16 R14 28 1 工位耐磨片替代版本审核工艺比例质量第 张共 张 阶 段 标 记批准标准化主管设计年 月 日签名更改文件号分区处数标记设计校核零件代号借(通)用件登记旧底图总号底 图 总 号 日 期2:11BADCBA 签 字25436642513毕 业 设 计 任 务 书1毕业设计的任务和要求:1.1 了解所测药筒零件的结构特征;1.2 熟悉和掌握目标零件各待测尺寸的测量原理方法;1.3 设计的测量系统要求效率高,质量好,使用、维修方便,成本低;1.4 自动化程度高;1.5 要求:测量效率 2000件/8小时;工作可靠。2毕业设计的具体工作内容:2.1完成整体结构设计,考虑测量工艺的布置; 2.2搭建系统,选择测量元器件,实现工件总长、底厚、两档外径、内径测量; 2.3测量效率需达到6件/min;2.4绘制系统的实体模型、生成系统装配图和零件图。毕 业 设 计 任 务 书3对毕业设计成果的要求:3.1 提交毕业设计开题报告和说明书各一份;3.2 提供所设计设备的装配图和所有零、部件的工程图;3.3 提交相关内容的外文翻译一份。4毕业设计工作进度计划:起 迄 日 期工 作 内 容2016年 2月29日 3月26日 3月27日 5月28日5月29日 6月 5 日资料收集、方案设计、开题报告撰写;结构设计、工程图纸绘制、毕业设计说明书撰写;资料整理、打印、论文提交、评阅、答辩。学生所在系审查意见: 同意下发任务书系主任: 2016 年 2 月 29 日 10 1 R10 R11 30 2 传感器固定片替代版本审核工艺比例质量第 张共 张 阶 段 标 记批准标准化主管设计年 月 日签名更改文件号分区处数标记设计校核零件代号借(通)用件登记旧底图总号底 图 总 号 日 期2:11BADCBA 签 字25436642513 10 19 8.50 19 10 4 内径测头替代版本审核工艺比例质量第 张共 张 阶 段 标 记批准标准化主管设计年 月 日签名更改文件号分区处数标记设计校核零件代号借(通)用件登记旧底图总号底 图 总 号 日 期2:11BADCBA 签 字25436642513 20 M4x0.7 M10x1.0 38 5 7 内径测头连接件替代版本审核工艺比例质量第 张共 张 阶 段 标 记批准标准化主管设计年 月 日签名更改文件号分区处数标记设计校核零件代号借(通)用件登记旧底图总号底 图 总 号 日 期2:11BADCBA 签 字25436642513 3000.135111:51C254342513 56 R8 4.20 30 R10 37 5 10 1 压紧块替代版本审核工艺比例质量第 张共 张 阶 段 标 记批准标准化主管设计年 月 日签名更改文件号分区处数标记设计校核零件代号借(通)用件登记旧底图总号底 图 总 号 日 期1:11BADCBA 签 字25436642513Brake systemsWe all know that pushing down on the brake pedal slows a car to a stop. But how does this happen? How does your car transmit the force from your leg to its wheels? How does it multiply the force so that it is enough to stop something as big as a car?Brake Image GalleryLayout of typical brake system. See more brake images.When you depress your brake pedal, your car transmits the force from your foot to its brakes through a fluid. Since the actual brakes require a much greater force than you could apply with your leg, your car must also multiply the force of your foot. It does this in two ways: Mechanical advantage (leverage) Hydraulic force multiplication The brakes transmit the force to the tires using friction, and the tires transmit that force to the road using friction also. Before we begin our discussion on the components of the brake system, well cover these three principles: Leverage Hydraulics Friction Leverage and HydraulicsIn the figure below, a force F is being applied to the left end of the lever. The left end of the lever is twice as long (2X) as the right end (X). Therefore, on the right end of the lever a force of 2F is available, but it acts through half of the distance (Y) that the left end moves (2Y). Changing the relative lengths of the left and right ends of the lever changes the multipliers. The pedal is designed in such a way that it can multiply the force from your leg several times before any force is even transmitted to the brake fluid. The basic idea behind any hydraulic system is very simple: Force applied at one point is transmitted to another point using an incompressible fluid, almost always an oil of some sort. Most brake systems also multiply the force in the process. Here you can see the simplest possible hydraulic system: Your browser does not support JavaScript or it is disabled. Simple hydraulic system In the figure above, two pistons (shown in red) are fit into two glass cylinders filled with oil (shown in light blue) and connected to one another with an oil-filled pipe. If you apply a downward force to one piston (the left one, in this drawing), then the force is transmitted to the second piston through the oil in the pipe. Since oil is incompressible, the efficiency is very good - almost all of the applied force appears at the second piston. The great thing about hydraulic systems is that the pipe connecting the two cylinders can be any length and shape, allowing it to snake through all sorts of things separating the two pistons. The pipe can also fork, so that one master cylinder can drive more than one slave cylinder if desired, as shown in here: Your browser does not support JavaScript or it is disabled. Master cylinder with two slaves The other neat thing about a hydraulic system is that it makes force multiplication (or division) fairly easy. If you have read How a Block and Tackle Works or How Gear Ratios Work, then you know that trading force for distance is very common in mechanical systems. In a hydraulic system, all you have to do is change the size of one piston and cylinder relative to the other, as shown here: Your browser does not support JavaScript or it is disabled. Hydraulic multiplication To determine the multiplication factor in the figure above, start by looking at the size of the pistons. Assume that the piston on the left is 2 inches (5.08 cm) in diameter (1-inch / 2.54 cm radius), while the piston on the right is 6 inches (15.24 cm) in diameter (3-inch / 7.62 cm radius). The area of the two pistons is Pi * r2. The area of the left piston is therefore 3.14, while the area of the piston on the right is 28.26. The piston on the right is nine times larger than the piston on the left. This means that any force applied to the left-hand piston will come out nine times greater on the right-hand piston. So, if you apply a 100-pound downward force to the left piston, a 900-pound upward force will appear on the right. The only catch is that you will have to depress the left piston 9 inches (22.86 cm) to raise the right piston 1 inch (2.54 cm).A Simple Brake SystemBefore we get into all the parts of an actual car brake system, lets look at a simplified system:Your browser does not support JavaScript or it is disabled. A simple brake system You can see that the distance from the pedal to the pivot is four times the distance from the cylinder to the pivot, so the force at the pedal will be increased by a factor of four before it is transmitted to the cylinder. You can also see that the diameter of the brake cylinder is three times the diameter of the pedal cylinder. This further multiplies the force by nine. All together, this system increases the force of your foot by a factor of 36. If you put 10 pounds of force on the pedal, 360 pounds (162 kg) will be generated at the wheel squeezing the brake pads. There are a couple of problems with this simple system. What if we have a leak? If it is a slow leak, eventually there will not be enough fluid left to fill the brake cylinder, and the brakes will not function. If it is a major leak, then the first time you apply the brakes all of the fluid will squirt out the leak and you will have complete brake failure. Drum brakes work on the same principle as disc brakes: Shoes press against a spinning surface. In this system, that surface is called a drum.Figure 1. Location of drum brakes. See more drum brake pictures.Many cars have drum brakes on the rear wheels and disc brakes on the front. Drum brakes have more parts than disc brakes and are harder to service, but they are less expensive to manufacture, and they easily incorporate an emergency brake mechanism. In this edition of HowStuffWorks, we will learn exactly how a drum brake system works, examine the emergency brake setup and find out what kind of servicing drum brakes need. Figure 2. Drum brake with drum in placeFigure 3. Drum brake without drum in placeLets start with the basics. The Drum BrakeThe drum brake may look complicated, and it can be pretty intimidating when you open one up. Lets break it down and explain what each piece does. Figure 4. Parts of a drum brakeLike the disc brake, the drum brake has two brake shoes and a piston. But the drum brake also has an adjuster mechanism, an emergency brake mechanism and lots of springs. First, the basics: Figure 5 shows only the parts that provide stopping power. Your browser does not support JavaScript or it is disabled. Figure 5. Drum brake in operation When you hit the brake pedal, the piston pushes the brake shoes against the drum. Thats pretty straightforward, but why do we need all of those springs? This is where it gets a little more complicated. Many drum brakes are self-actuating. Figure 5 shows that as the brake shoes contact the drum, there is a kind of wedging action, which has the effect of pressing the shoes into the drum with more force. The extra braking force provided by the wedging action allows drum brakes to use a smaller piston than disc brakes. But, because of the wedging action, the shoes must be pulled away from the drum when the brakes are released. This is the reason for some of the springs. Other springs help hold the brake shoes in place and return the adjuster arm after it actuates. Brake AdjusterFor the drum brakes to function correctly, the brake shoes must remain close to the drum without touching it. If they get too far away from the drum (as the shoes wear down, for instance), the piston will require more fluid to travel that distance, and your brake pedal will sink closer to the floor when you apply the brakes. This is why most drum brakes have an automatic adjuster. Figure 6. Adjuster mechanismNow lets add in the parts of the adjuster mechanism. The adjuster uses the self-actuation principle we discussed above. Your browser does not support JavaScript or it is disabled. Figure 7. Drum brake adjuster in operation In Figure 7, you can see that as the pad wears down, more space will form between the shoe and the drum. Each time the car stops while in reverse, the shoe is pulled tight against the drum. When the gap gets big enough, the adjusting lever rocks enough to advance the adjuster gear by one tooth. The adjuster has threads on it, like a bolt, so that it unscrews a little bit when it turns, lengthening to fill in the gap. When the brake shoes wear a little more, the adjuster can advance again, so it always keeps the shoes close to the drum. Some cars have an adjuster that is actuated when the emergency brake is applied. This type of adjuster can come out of adjustment if the emergency brake is not used for long periods of time. So if you have this type of adjuster, you should apply your emergency brake at least once a week. ServicingThe most common service required for drum brakes is changing the brake shoes. Some drum brakes provide an inspection hole on the back side, where you can see how much material is left on the shoe. Brake shoes should be replaced when the friction material has worn down to within 1/32 inch (0.8 mm) of the rivets. If the friction material is bonded to the backing plate (no rivets), then the shoes should be replaced when they have only 1/16 inch (1.6 mm) of material left. Photo courtesy of a local AutoZone storeFigure 9. Brake shoeJust as in disc brakes, deep scores sometimes get worn into brake drums. If a worn-out brake shoe is used for too long, the rivets that hold the friction material to the backing can wear grooves into the drum. A badly scored drum can sometimes be repaired by refinishing. Where disc brakes have a minimum allowable thickness, drum brakes have a maximum allowable diameter. Since the contact surface is the inside of the drum, as you remove material from the drum brake the diameter gets bigger. Figure 10. Brake drum 制动系统众所周知,踩下制动踏板可以使汽车减速至停止。但这是如何产生的呢?汽车是如何将力从你的腿传递到车轮的呢?汽车是如何将力放大到足够大以致可以将像汽车一样大的东西制动的呢? 制动系统组件当你踩下制动踏板的时候,汽车通过液体把力从脚传递到制动器。因为制动器需要的真正力量比你的腿能提供的要大的多,所以汽车必须放大脚产生的力 有两种方式:机械杠杆作用液力放大 制动器通过摩擦把力传递给轮胎,并且轮胎也是通过摩擦把力传递给路面的。 在我们讨论制动系统的组成之前,先来介绍以下三条原则:杠杆液力摩擦力杠杆和液力在下面的图中,一个力F加在杠杆的左端。左端的杠杆长度(2X)是右端(X)的两倍。因此杠杆右端可施加的力为2F ,但是右端移动的距离(Y)是左端距离(2Y)的一半。改变杠杆的左端和右端的长度可以改变放大系数。 任何液压系统背后的基本原理都是非常简单的:作用在某一点力通过通常是油一类的不可压缩的液体传递到另一点。大多数的制动系统也在这个过程中放大力。下面的是最简单的液压系统: 简单液压系统在上图中,两个活塞放在两个充满油的玻璃液压缸中并且由充满油的管道相连。如果在一个活塞上施加一个向下的力,那么力将通过管道中的油传递到第二个活塞。因为油液是不可压缩的,所以传递效率很好,大部分的作用力都传递到了另一个活塞。液压系统的好处连接两液压缸的管道可以是任何长度和形状,这样就可以使管道弯曲的通过两活塞之间的各种部件。管道也可以是分叉的,如果有需要的话,这样一个主缸可以驱动数个副缸。如下图所示: 带有两个副缸的主缸 液压系统的另一个好处是产生放大(或者缩小) 力相当地容易。如果你一读过滑车设备工作原理或者齿轮齿数比原理,那么你就会知道在机械系统中把力转化为距离处理是很常见的。在液压系统中,我们所要做的就是相对地改变一组活塞和液压缸的尺寸。如下图所示: 液压增力原理为了确定上图中的放大因子,先由观察活塞的尺寸开始。假设左边活塞的直径为2英尺(5.08cm而右边的直径为6英尺(15.24cm)。两个活塞的面积是Pi * r2 。因此左面活塞的面积是3.14,而右面的面积是28.26。右面活塞的面积是左边的九倍大。这就意味着无论在左面的活塞上施加多大的力,在右面的活塞上就会输出九倍于左面的力。所以,如果在左边活塞上施加100磅向下的力,那么在右面活塞上将产生900磅向上的力。唯一的补偿是左面的活塞要移动9英尺(22.86cm)来使右面提升1英尺(2.54cm)一个简单的制动系统在我们深入了解一个真实的制动系统的各部分之前,让我们先来看一个简化的系统: 我们可以看到踏板到枢轴的距离是液压缸到枢轴距离的4倍,所以施加在踏板上的力在传递到液压缸之前将被增加4倍。我们还可以看到制动缸的直径是踏板缸直径的3倍。这就将力进一步放大了九倍。最终这个系统将腿上的力增加了36倍。所以,如果在踏板上施加10磅的力,将在挤压制动带的轮上产生369磅(162kg)的力。下面是这种简单系统所存在的问题。要是系统有泄漏该怎么办呢?如果是轻微泄漏,最终将会没有足够的油使制动缸充满,并且制动器将停止工作。如果是严重泄漏,那么在你制动的第一时间,所有的油液将从泄露处喷射而出,并且制动系统将彻底地不起作用。鼓式制动器的工作原理和盘式制动器是一样的:制动面接触一个磨砂的表面。在这个系统中,那个表面称作制动鼓 图1.制动鼓的位置许多汽车的后轮安装鼓式制动器,而盘式制动器安装在前面。鼓式制动器比盘式制动器有更多的零件并且更难检修。 但是制造成本相对便宜,还有鼓式制动器容易组装一个紧急使用的制动装置。在本版本的How StuffWorks中,我们将详尽了解鼓式制动系统是如何工作的。考察紧急制动系统的组成,并且找到鼓式制动器需要何种检修工作。图2. 有鼓的鼓式制动器 图3.未安装鼓的鼓式制动器让我们基础开始:鼓式制动器鼓式制动器可能看起来比较复杂,它可以是很复杂的,当你打开一个的时候。让我们拆开它,并解释每一块的作用。 图4. 鼓式制动器的组成如盘式制动器,鼓式制动器有两个制动蹄和一个活塞。 But the drum brake also has an adjuster mechanism, an emergency brake mechanism and lots of springs .但是鼓式制动器也有一个调节机制,紧急刹车机制和大量的弹簧 。首先,基础知识: 图5显示只有部分提供的制动力。 图5.工作状态下的鼓式制动器当你踩下刹车踏板时,活塞推动紧靠着鼓的制动蹄。 Thats pretty straightforward, but why do we need all of those springs?这是很简单的,但为什么我们需要所有这些弹簧呢?这使它变的有点复杂许多鼓式制动器是自增力式的。图5表明,当制动蹄与鼓相接触的时候,两者间有一个楔入运动,这起到了产生更多的力量将制动蹄向鼓挤压。由楔入运动提供的额外制动力使得鼓式制动器可以使用比盘式制动器更小的活塞。但是由于这种楔入运动,在制动释放的时候制动蹄必须从鼓拉离开。这是使用其中部分弹簧的原因。其它弹簧的作用是将制动蹄固定并且驱动调节臂返回。制动调节器为了使鼓式制动器正确的工作,制动蹄必须紧贴着鼓但是不碰到它。如果离鼓太远的话,活塞将需要更多的油液以通过那段距离,并且当你制动时,制动踏板将下行而离地板更近。这就是为什么大多数的鼓式制动器有一个自动调节装置的原因。 图6.调节机构现在让我们在把调节机构也加进来,这个调节器使用的是上面讨论过的自增力原理。图7.工作状态下的鼓式制动调节器在图7中,我们可以看到由于摩擦片的磨损,这使得制动蹄和鼓之间形成更大的空间。每次车停下的时候,相反的是制动蹄被拉的和鼓更紧。当间隙变的足够大时,调节杠杆足够摆动推进调节齿轮先前转动一个齿。调节装置有一个行程,就像一个螺栓,以便当它转动时旋开一点点,延长以填补间隙。当制动蹄进一步磨损,调节器又可以再向前。所以它总是保持制动蹄紧靠着鼓。有些汽车紧急刹车时有一个被驱动的调节器。如果紧急制动很长一段时间没有使用,这种类型的调节器可以产生调节作用。所以如果你有这种类型的调节器,你应该每周至少使用一次紧急制动装置。检修鼓式制动器最常见的检修是更换制动蹄。一些鼓式制动器在背面设置了一个检查孔,通过这个孔,你可以看到制动蹄上还剩余多少摩擦材料。当摩擦材料磨损到铆钉内1/32英寸(0.8mm)时,必须更换制动蹄。如果摩擦材料和垫板直接连接(无铆钉),那么当摩擦材料只剩下1/16英寸(1.6mm)时,就该换制动蹄了。 图9.制动蹄正如在盘式制动器中,深的刻痕可能会磨穿到制动鼓。如果一个磨损的制动蹄使用过长的时间,把摩擦片固定到垫板上铆钉可以将制动鼓摸出一条凹槽。一个严重磨损的制动鼓有时可以被修补修复。盘式制动器有最小允许厚度,鼓式制动器有一个最大允许直径。因为接触表面是鼓的内侧。当你将材料从制动器中取出时,制动鼓的直径变大了。 图10.制动鼓 第16页 共16页 2.58 8.25 12 13.18 21 4.40 R9 27 21 3 夹具替代版本审核工艺比例质量第 张共 张 阶 段 标 记批准标准化主管设计年 月 日签名更改文件号分区处数标记设计校核零件代号借(通)用件登记旧底图总号底 图 总 号 日 期2:11BADCBA 签 字25436642513 7.04 M4x0.7 12 30 70 导杆气缸体替代版本审核工艺比例质量第 张共 张 阶 段 标 记批准标准化主管设计年 月 日签名更改文件号分区处数标记设计校核零件代号借(通)用件登记旧底图总号底 图 总 号 日 期1:11BADCBA 签 字25436642513 12 6 70 12 10 6 导杆气缸活塞杆替代版本审核工艺比例质量第 张共 张 阶 段 标 记批准标准化主管设计年 月 日签名更改文件号分区处数标记设计校核零件代号借(通)用件登记旧底图总号底 图 总 号 日 期1:11BADCBA 签 字25436642513 M4x0.7 10 8 55 7 20 导杆气缸连接件替代版本审核工艺比例质量第 张共 张 阶 段 标 记批准标准化主管设计年 月 日签名更改文件号分区处数标记设计校核零件代号借(通)用件登记旧底图总号底 图 总 号 日 期2:11BADCBA 签 字25436642513 70 8 83.26 5 R7 5.20 14 58 173 工位上支承替代版本审核工艺比例质量第 张共 张 阶 段 标 记批准标准化主管设计年 月 日签名更改文件号分区处数标记设计校核零件代号借(通)用件登记旧底图总号底 图 总 号 日 期1:51BADCBA 签 字25436642513毕 业 设 计 开 题 报 告1结合毕业设计情况,根据所查阅的文献资料,撰写2000字左右的文献综述:文 献 综 述一、药筒的发展药筒是近代火炮系统中的一个重要组成部分。药筒的出现与应用,对火炮的发展起了很大的推动作用,引起了火炮的重大变革1。二战期间,德国首先研制了钢质整体引伸药筒,而后,美、苏、日等国也相继研制和生产了钢质整体引伸药筒,以满足战时药筒的大量消耗。由于钢的强度高、韧性差,引伸同口径的药筒需要的设备吨位远高于铜质引伸药筒。因此,国内外,中小口径火炮均采用钢质整体引伸药筒,而大口径火炮采用其他方法生产钢质药筒。 我国五十年后期开始研制金属药筒。经过20多年的努力,在整体引伸药筒上取得了重大发展,开始具备了大量生产的能力。我国整体引伸药筒也是经历了从黄铜引伸药筒逐步过渡到钢质引伸药筒的过程,为了减轻小口径火炮系统的消极质量,提高射击速度,国外从五十年代开始研究整体引伸铝质药筒2, 1984年美国研制了30X173mm铝合金药筒,1985-1988年研制了25X137mm铝合金药筒,2001年研制了20X120mm铝合金药筒。我国从九十年代也开始了铝合金药筒的研究,并取得了一定的进展。可燃药筒最早出现在第二次世界大战的德国。至今,德国掌握着可燃药筒最先进研究水平和制造技术。可燃药筒是使用可燃性物质制成,发射时在膛内燃尽,无需推出炮膛,特别适用于坦克炮使用。从二十世纪7080年代,美国、原苏联、西德、法国、日本、瑞士等国已在坦克炮、榴弹炮、自行火炮、航炮上装备了20mm155mm口径火炮中逐渐使用了可燃药筒,部分取代了金属药筒3,目前,国内外坦克炮上大部分采用这种药筒。塑料药筒也称可燃药筒,是指不燃烧、不消失的塑料制造的非金属药筒,用以替代稀缺黄铜,减轻弹药质量4。瑞典博福斯公司研制的FH-77式155mm榴弹炮,配用了主要弹种为77式底凹杀伤爆破榴弹,装药为可重复使用的钢底塑料药筒,比黄铜药筒减轻75%,可重复使用4次以上。俄罗斯ZC-19式152mm加农炮炮弹也采用了带金属底座的塑料药筒。其它采用塑料药筒的弹药还包括日本的75mm和105mm榴弹以及美国105mm榴弹5。国内塑料药筒的研究在1967年以前因其低温(-40)脆裂一直未解决,故处于停顿状态6,80年代之后,在配合自行加榴炮研制过程中,采用改性HDPE制造塑料药筒,该材料对高温、高湿环境条件具有良好的适应性,低温脆性温度达-80以下,可保证低温正常使用的可靠性,与发射药具有良好的相容性,机械强度满足闭气性和发射强度要求。可燃药筒优点是火炮无需退壳机构,同时减少了回收运输等繁重任务,特别适用于速射坦克炮使用弹药。为了克服其缺点,其今后要解决的关键技术包括:(1)可燃药筒表面涂覆多功能复合涂层技术,提高药筒的储存与防护性能7。(2)可燃药筒发射时在膛内完全燃烧技术,包括材料组分、药筒结构、加工工艺、可燃药筒挥发分含量对燃烧性能的影响分析8,(3)可燃药筒因为参与膛内燃烧,其结构、性能以及其本身的燃烧特性对弹道性能有很大的影响,因此必须应用现代内弹道理论对可燃药筒燃烧规律进行深入的研究9。(4)合理优化材料组分配方,解决可燃药筒强度与膛内燃尽的矛盾10,塑料药筒今后主要关键技术是通过改进材料组分、药筒结构、加工工艺,解决塑料药筒难以承受高膛压、应力开裂和热降解等缺点,提高塑料药筒的强度、模量、化学稳定性、耐磨性、润滑性、耐环境性。二、自动测量设备的发展现状 70年代以前,我国军用测试设备的自动化程度是很低的,以手工操作为主,测量设备是为了某种测量目的而专门设计制造的,难以改作它用,称为第一代军用测量系统。 70年代末80年代初,我国的军用自动测量设备转入以GPIB和CAMAC总线为主的半自动和自动测试阶段。与以前的专用设备比较,采用GPIB总线和CAMAC总线后,武器系统测量设备箱标准化、模块化、通用化体制迈进了一大步,提高了设备的重复利用率;避免了各型号或同型号不同批次测量设备的重复性研制,降低了设备投资,技术上达到了相互交流和继承,使用上达到了成果共享和设备通用,因此缩短了研制周期,节省了人力和资金,成为第二代军用测量系统。 90年代初,随着VXI总线的逐渐普及,我国的军用自动测试设备越来越多的采用VXI总线,称之为第三代测量系统。经过30多年的发展,我国的测量仪器的生产规模和生产能力仅次于美国、日本、英国、德国、法国,居世界第六位。但这些测量仪器主要是中、低档仪器。二、药筒尺寸自动化检测研究的意义 目前药筒几何尺寸自动化检测,还没有一套成型的系统检测方法,大多数关于筒检测方面的研究,只是针对单一或少量几何尺寸进行检测,功能比较单一,集成化低,检测不够全面。本次药筒几何尺寸的测量集成了多种测量方法,包括总长、底厚、外径和内经。三、长度尺寸测量 经过广泛查询对比长度尺寸测量仪器资料,差动变压器式传感器可以被用于该药筒长度测量。差动变压式传感器是将线性变化的机械量转化成电量的变化11。差动变压器式位移传感器初级绕组接通交流电源后,两个次级绕组由于互感作用产生了感应电动势 E2-1与 E2-2。如果把两个二次线圈的同名端相连接,会在另一对同名端产生一个与铁芯位移成线性函数关系的特性曲线。当铁芯位于两个二次线圈中间位置时,两个线圈的电动势相等(即 E2-1 E2-20),输出电压为 0V,把此时的电压值称为零点电压或残余电压当铁芯偏离中间位置时,两组线圈产生的互感发生变化。两个次级线圈中的感应电动势不再相等,便有电压输出,输出电压的大小和铁芯的位移量有关,输出电压的相位取决于铁芯移动的方向12。四、外径测量 激光测径仪箱体内带有高速旋转的HeNe激光发射器和激光接收器,由激光发射器发出的激光束通过多面镜反射后,透过发射透镜变成平行光。工件只要挡住光束,通过接收透镜,传到光电探测器上,就会有信号产生。然后通过光电传感器将此信号传到计算机上进行处理,便可获得测量工件的直径值13。五、内经测量 电子柱式气动量仪的设计原理是比较测量法,其测量方法是将长度信号转化为气流信号,再通过气电转换器将气信号转换为电信号,由发光管组成的光柱显示出测量值。一套运用电子柱式气动量仪建立的完整气动测量系统,一般包括:气压阀、放大器、气动测头、标定规、连接器及其他附件组成14。六、底厚测量 机器视觉技术以其处理速度快、包含信息量大和方便实现自动化等特点,已经广泛的应用于工业自动化控制领域。机器视觉是运用计算机模拟人的视觉功能,代替人眼实现测量和判断。机器视觉系统是指通过机器视觉采集装置,对目标区域进行图像采集,然后将其转换成图像信号,传送给专用的图像处理系统软件,再对特征信息进行分析处理,转化成数字信号被计算机识别控制15。 参考文献:1 钱杏轩,钢制整体引伸药筒的设计与制造M,国防工业出版社,1988.9,1-2 2 Brain Tasson,“Aluminum Cartridge Case
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:某药筒尺寸自动测量设备开发测量部件设计【含 图纸和文档全套】【LB6】
链接地址:https://www.renrendoc.com/p-56565765.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!