气流纺纱器转杯的工艺过程编制及部分工装夹具设计【含CAD图纸和文档全套】【LB6】
收藏
资源目录
压缩包内文档预览:
编号:56567772
类型:共享资源
大小:1.82MB
格式:ZIP
上传时间:2020-03-12
上传人:好资料QQ****51605
认证信息
个人认证
孙**(实名认证)
江苏
IP属地:江苏
45
积分
- 关 键 词:
-
含CAD图纸和文档全套
LB6
气流
纺纱
器转杯
工艺
过程
编制
部分
工装
夹具
设计
CAD
图纸
文档
全套
- 资源描述:
-
【温馨提示】====【1】设计包含CAD图纸 和 DOC文档,均可以在线预览,所见即所得,,dwg后缀的文件为CAD图,超高清,可编辑,无任何水印,,充值下载得到【资源目录】里展示的所有文件======【2】若题目上备注三维,则表示文件里包含三维源文件,由于三维组成零件数量较多,为保证预览的简洁性,店家将三维文件夹进行了打包。三维预览图,均为店主电脑打开软件进行截图的,保证能够打开,下载后解压即可。======【3】特价促销,,拼团购买,,均有不同程度的打折优惠,,详情可咨询QQ:1304139763 或者 414951605======【4】 题目最后的备注【LB6系列】为店主整理分类的代号,与课题内容无关,请忽视
- 内容简介:
-
中北大学信息商务学院机械加工工序卡片共 12 张第 1 张产品代号零(部)件代号零(部)件名称纺纱器转杯工序号001设备材料名称车 床名称LC4CS型号CA6140硬度HBS150夹具名称三爪卡盘刀具量具辅具名称规格名称名称规格名称端面车刀45工序号工步号工步名称及内容加工表面尺寸切削用量直径或宽度长度进给量背吃刀量主 轴转 速切速走刀次数001夹小端40(22),大端面63朝外1车大端端面6320.4212.62.5712倒角45X1编制王泽宇设计王泽宇审核赵丽琴批准描图校对中北大学信息商务学院机械加工工序卡片共 12 张第 10 张产品代号零(部)件代号零(部)件名称纺纱器转杯工序号005/006设备材料名称钳工/排钻名称LC4CS型号Z3040硬度HBS150夹具名称、编号钻模73012086刀具量具辅具名称规格名称规格名称规格钻头30塞规10H7刮刀铰刀塞规工序号工步号工步名称及内容加工表面尺寸切削用量直径或宽度长度背吃刀量进给量主 轴转 速切速走刀次数005100检验,小者压孔0061钻均布孔8,控制尺寸及84150.115.512铰孔8,粗糙度0.84150.115.51编制王泽宇设计王泽宇审核赵丽琴批准描图校对中北大学信息商务学院机械加工工序卡片共12 张第11张产品代号零(部)件代号零(部)件名称纺纱器转杯工序号007/008设备材料名称钻床名称LC4CS型号Z3040硬度HBS150夹具名称、编号钻模、快换钻套刀具量具辅具名称规格名称名称规格名称锪孔钻90刮刀工序号工步号工步名称及内容加工表面尺寸切削用量直径或宽度长度背吃刀量进给量主 轴转 速切速走刀次数007倒均布孔8角45X1008去均布孔8内腔毛刺编制王泽宇设计王泽宇审核赵丽琴批准描图校对中北大学信息商务学院机械加工工序卡片共 12 张第 12张产品代号零(部)件代号零(部)件名称纺纱器转杯工序号009、010、011设备材料名称钳工名称LC4CS型号硬度夹具名称、编号刀具量具辅具名称规格名称名称规格名称工序号工步号工步名称及内容加工表面尺寸切削用量直径或宽度长度背吃刀量进给量主 轴转 速切速走刀次数009火油清洗0101清洗并擦净2涂防锈液011完工检验编制王泽宇设计王泽宇审核赵丽琴批准描图校对中北大学信息商务学院机械加工工序卡片共 12 张第 2 张产品代号零(部)件代号零(部)件名称纺纱器转杯工序号 002设备材料名称数控车床名称LC4CS型号CJK6240硬度HBS150夹具名称、编号三爪卡盘刀具量具辅具名称规格名称名称规格名称端面车刀90外圆车刀75工序号工步号工步名称及内容加工表面尺寸切削用量直径或宽度长度背吃刀量进给量主 轴转 速切速走刀次数002夹大外圆端1车380.1外圆为40控制为1540720.512.62.5752车外圆为控制为1540510.10.512.62.5713车一段工艺外圆至,控制台阶到空口端面的距离为40231.5115.532编制王泽宇设计王泽宇审核赵丽琴批准描图校对中北大学信息商务学院机械加工工序卡片共12张第 3 张产品代号零(部)件代号零(部)件名称纺纱器转杯工序号003设备材料名称数控车床名称LC4CS型号CJK6240硬度HBS150夹具名称、编号三爪卡盘刀具量具辅具名称规格名称名称规格名称车刀75麻花钻工序号工步号工步名称及内容加工表面尺寸切削用量直径或宽度长度背吃刀量进给量主 轴转 速切速走刀次数003夹工艺外圆1车端面,控制到肩面的距离为612.52.7512车外圆为57510.512.52.7553车锥外圆及为,长为1.547.51.5119.62.424钻孔,距大端面深458.5450.512.52.41编制王泽宇设计王泽宇审核赵丽琴批准描图校对中北大学信息商务学院机械加工工序卡片共 12 张第 4 张产品代号零(部)件代号零(部)件名称纺纱器转杯工序号003设备材料名称数控车床名称LC4CS型号CJK6240硬度HBS150夹具名称、编号三爪卡盘刀具量具辅具名称规格名称名称规格名称车刀75游标卡尺工序号工步号工步名称及内容加工表面尺寸切削用量直径或宽度长度背吃刀量进给量转速或双 行程数切速走刀次数0035镗孔为,深12.62.5716车R20,深4014.50.5112.62.5717粗车端面,车外圆,长1.5,粗车外圆571.51112.62.571编制王泽宇设计王泽宇审核赵丽琴批准描图校对中北大学信息商务学院机械加工工序卡片共12 张第 5 张产品代号零(部)件代号零(部)件名称纺纱器转杯工序号003设备材料名称数控车床名称LC4CS型号CJK6240硬度HBS150夹具名称、编号三爪卡盘刀具量具辅具名称规格名称名称规格名称车刀75车刀特制75工序号工步号工步名称及内容加工表面尺寸切削用量直径或宽度长度背吃刀量进给量主 轴转 速切速走刀次数0038粗车内成形孔,;粗车R20及肩面,控制为15.8100.15112.62.419粗车内腔541.20.2112.62.4110粗车为及肩面,控制13为13.638150.050.512.61211粗车外圆及肩面,控制尺寸17.5为18.1389.50.515.531 12的锥外圆及 肩面粗糙度1.6,控制尺寸13为13.338140.050.512.611编制王泽宇设计王泽宇审核赵丽琴批准描图校对中北大学信息商务学院机械加工工序卡片共 12 张第 6 张产品代号零(部)件代号零(部)件名称纺纱器转杯工序号003设备材料名称数控车床名称LC4CS型号CJK6240硬度HBS150夹具名称、编号三爪卡盘刀具量具辅具名称规格名称名称规格名称镗刀外圆车刀75工序号工步号工步名称及内容加工表面尺寸切削用量直径或宽度长度背吃刀量进给量主 轴转 速切速走刀次数00313精车外圆及肩面粗糙度为1.6,控制尺寸17.5为17.837150.2519.62414切圆弧槽R1.2 控制粗糙度为1.62.415119.62115粗精镗孔 控制粗糙度为0.81017.50.2519.623编制王泽宇设计王泽宇审核赵丽琴批准描图校对中北大学信息商务学院机械加工工序卡片共 12 张第 7 张产品代号零(部)件代号零(部)件名称纺纱器转杯工序号003设备材料名称数控车床名称LC4CS型号CJK6240硬度HBS150夹具名称、编号三爪卡盘刀具量具辅具名称规格名称名称规格名称特制车刀75圆头车刀R3工序号工步号工步名称及内容加工表面尺寸切削用量直径或宽度长度背吃刀量进给量主 轴转 速切速走刀次数00316精车孔内成形孔 为 ,孔口0.3X30;67锥面,控制 ,粗糙度0.8;精车35 夹角及大肩面深,控制粗糙度0.8,控制尺寸 及 ;精车R20及 底平面,深 ,粗糙度为1.6; 孔口倒角0.5X4543.840151.515 150.020.0 9.620.20.2111编制王泽宇设计王泽宇审核赵丽琴批准描图校对中北大学信息商务学院机械加工工序卡片共 13 张第 8 张产品代号零(部)件代号零(部)件名称纺纱器转杯工序号 003设备材料名称数控车床名称LC4CS型号CJK6240硬度HBS150夹具名称、编号三爪卡盘刀具量具辅具名称规格名称名称规格名称外圆车刀75工序号工步号工步名称及内容加工表面尺寸切削用量直径或宽度长度背吃刀量进给量主 轴转 速切速走刀次数00317精车端面,控制尺寸,粗糙度1.65730.0118精车外圆为,粗糙度为1.6119精车锥度外圆30及外圆 为 ,粗糙度1.657180.01编制王泽宇设计王泽宇审核赵丽琴批准描图校对中北大学信息商务学院机械加工工序卡片共 12 张第 9 张产品代号零(部)件代号零(部)件名称纺纱器转杯工序号 003/004设备材料名称数控车床名称LC4CS型号CJK6240硬度HBS150夹具名称、编号三爪卡盘刀具量具辅具名称规格名称名称规格名称精车刀切断刀工序号工步号工步名称及内容加工表面尺寸切削用量直径或宽度长度背吃刀量进给量主 轴转 速 切速走刀次数00320精车外角0.2X455730.01004倒2X45外角,切断,控制总长,粗糙度1.6,径向圆跳动度为0.02,0.04;端面跳动度0.04(以A为基准);371倒反面孔口角0.8X15,粗糙度为1.6,要求倒角后塞规通过。,如有毛刺,则用刮刀伸入孔内去处9.62.41编制王泽宇设计王泽宇审核赵丽琴批准描图校对转杯机械加工工序卡中北大学信息商务学院机械工程系机械加工工艺过程卡片产品型号零件图号A2共 4 页产品名称纺纱器转杯零件名称纺纱器转杯第 1 页材料牌号 LC4CS毛坯种类铸件毛坯外形尺寸长66大端63每毛坯件数1每台件数1备注工序号工序号工序内容工艺装备(机床、夹具、刀具)0011夹小端22,大端面63朝外CA6140、三爪卡盘、45端面车刀2车大端端面;倒角45X1CA6140、三爪卡盘、45端面车刀0021夹大外圆端,车380.1外圆为40控制为15CJK6240、三爪卡盘、90外圆车刀2车外圆为控制为15CJK6240、三爪卡盘、90外圆车刀描图3车一段工艺外圆至,控制台阶到空口端面的距离为CJK6240、三爪卡盘、90外圆车刀0031夹工艺外圆,车端面,控制到肩面的距离为CJK6240、三爪卡盘、75外圆车刀校图2车外圆为CJK6240、三爪卡盘、75外圆车刀3车锥外圆及为,长为1.5CJK6240、三爪卡盘、75外圆车刀底图号4钻孔,距大端面深45CJK6240、三爪卡盘、8.5麻花钻5镗孔为,深CJK6240、三爪卡盘、75内圆车刀中北大学信息商务学院机械工程系机械加工工艺过程卡片产品型号零件图号A2共 4 页产品名称纺纱器转杯零件名称纺纱器转杯第 2 页材料牌号LC4CS毛坯种类铸件毛坯外形尺寸长66大端径63每毛坯件数1每台件数1备注工序号工序号工序内容工艺装备(机床、夹具、刀具)0036车R20,深CJK6240、三爪卡盘、圆头车刀7粗车端面,车外圆,长1.5,粗车外圆CJK6240、三爪卡盘、75外圆车刀8粗车内成形孔,;粗车R20及肩面,控制为15.8CJK6240、三爪卡盘、75内圆车刀9粗车内腔CJK6240、三爪卡盘、特制内圆车刀描图10粗车为及肩面,控制13为13.6CJK6240、三爪卡盘、75外圆车刀11粗车外圆及肩面,控制尺寸17.5为18.1CJK6240、三爪卡盘、75外圆车刀校图12的锥外圆及 肩面粗糙度1.6,控制尺寸13为13.3CJK6240、三爪卡盘、75外圆车刀13精车外圆及肩面粗糙度为1.6,控制尺寸17.5为17.8CJK6240、三爪卡盘、75内圆车刀底图号14切圆弧槽R1.2 控制粗糙度为1.6CJK6240、三爪卡盘、R1.2圆头车刀15粗精镗孔 控制粗糙度为0.8CJK6240、三爪卡盘、75内圆车刀中北大学信息商务学院机械工程系机械加工工艺过程卡片产品型号零件图号A2共 4 页产品名称纺纱器转杯零件名称纺纱器转杯第 3 页材料牌号LC4CS毛坯种类铸件毛坯外形尺寸长66大端径63每毛坯件数1每台件数1备注工序号工序号工序内容工艺装备(机床、夹具、刀具)00316精车孔内成形孔 为 ,孔口0.3X30;67锥面,控制 ,粗糙度0.8;精车35 夹角及大肩面深,控制粗糙度0.8,控制尺寸 及 ;精车R20及 底平面,深 ,粗糙度为1.6; 孔口倒角0.5X45CJK6240、三爪卡盘、75内圆车刀CJK6240、三爪卡盘、75外圆车刀,圆头车刀,45端面车刀描图17精车端面,控制尺寸,粗糙度1.6CJK6240、三爪卡盘、45端面车刀18精车外圆为,粗糙度为1.6CJK6240、三爪卡盘、45端面车刀校图19精车锥度外圆30及外圆 为 ,粗糙度1.6CJK6240、三爪卡盘、75外圆车刀20精车外角0.2X45CJK6240、三爪卡盘、45外圆车刀底图号004倒2X45外角,切断,控制总长,粗糙度1.6,径向圆跳动度为0.02,0.04;端面跳动度0.04(以A为基准);倒反面孔口角0.8X15,粗糙度为1.6,要求倒角后塞规通过。,如有毛刺,则用刮刀伸入孔内去处CJK6240、三爪卡盘、75内圆车刀、切断刀装订号中北大学信息商务学院机械工程系机械加工工艺过程卡片产品型号零件图号A2共 4 页产品名称纺纱器转杯零件名称纺纱器转杯第 4 页材料牌号LC4CS毛坯种类铸件毛坯外形尺寸长66大端径63每毛坯件数1每台件数1备注工序号工序号工序内容工艺装备(机床、夹具、刀具)005100检验,小者压孔0061钻均布孔8,控制尺寸及8Z5040、专用夹具、4麻花钻2铰孔8,粗糙度0.8Z5040、专用夹具、4铰刀007倒均布孔8角45X0.2Z5040、专用夹具、45锪孔刀008去均布孔8内腔毛刺009火油清洗0101清洗并擦净描图2涂防锈液011完工检验校图 ONLINE MEASURING METHOD AND SYSTEM FOR DIAMETER PARAMETERS OF WHEEL SET WU Kaihua, ZHU Feng, ZHUANG Fei, YAN Kuang School of Automation, Hangzhou Dianzi University, Hangzhou 310018, P.R.China, Email: Keywords: Wheel set diameter, online measurement, optoelectronic measurement, automatic measuring system. Abstract The measuring of diameter parameters of wheel set is an important step for the safety of train vehicle running. The wear degree of wheel increases with the speedup of train. The paper introduced an online measuring method of diameter parameters of running wheel set based on optoelectronic detecting technique while the train is running in low-speed within 5-10km/h. The method used precision laser displace-ment sensor, high speed and high resolution CCD and digital image processing technology to realize the non-contact automatic measuring of wheel set parameters. These parameters include the diameter, roundness and diameter difference. The main influence factors for measuring accuracy, including movement, vibration and trigger error were analyzed. The automatic measuring system was designed. The system included wheel detector, laser displacement sensor, semiconductor laser source, CCD, online image acquisition and processing circuits. Theoretic and experimental results showed that the measuring accuracy of diameter parameters was within 1.0mm. The accuracy meets the demand of online diameter measurement. 1 Introduction In order to ensure the safety of a running train, its very important to detect the status of the wheel set automatically and regularly. The wearing degree of the wheel set is one of the main factors that influence the safety and stability of running train. In China, the measurement of wheel set wear is still static and by handwork mostly which limits the accuracy and reliability. The difference between different operators is often too big. The detecting efficiency is also very low. In recent years, the running speed has increased to 160-200km/h. The wear degree and speed are much quicker than before. The static and handwork measuring method cannot meet the development of high-speed train. Researching the automatic and online method is an urgent need of transportation and maintaining departments. The wear parameters of wheel set include geometrical parameters and surface defects. The main geometrical parameters include flange thickness, flange height, wheel diameter, roundness and diameter difference etc. The surface defects include scotching and flaking on wheel tread. These parameters are the main factors that influence the safety and stability of vehicle. The paper mainly introduced the online measuring method and system of diameter parameters. Up to now, most of the maintaining factories were still using special mechanic tools to measure the geometrical parameters by manual work, especially in China. These tools, including special vernier caliper, wheel diameter ruler and rim inside distance ruler, will wear down. The status of these tools will influence the measuring accuracy. The manual work manner had strong labor intensity and low efficiency. The man-made factors produced by different operators perhaps bring different and variable error. The measuring accuracy, reliability and repeatability cannot meet the demand of wheel set maintaining departments. The automatic measuring methods and systems had been researched in recent years1,2,3,4. Yet these methods were only suitable for maintaining factory and the vehicle must be disassembled. Several countries, such as Germany5, Japan, Italy and the United States, have developed online automatic detecting systems based on different principles. These systems are very expensive and have not been widely used. In China, there are also research on this field6, but no practical equipment had been developed. Regular measurement and repair cannot fill the requirements of maintenance. The online measuring of profile parameters is important to the distinguishing and forecast of failures while the train is running in low-speed. The preventive repair will reduce the maintenance cost greatly. The paper introduced a new non-contact online measuring method and system of diameter parameters. 2 Measuring method 2.1 Definition of diameter parameters Train vehicle wheel set is a rolling parts produced by pressing two wheels into an axle. Fig. 1 is the profile of a cargo wheel section. Tread is the contacting part with the rail. The right plane is rim inside plane. The plane wont contact with the rail and has no wear. The part between rim inside plane and tread is called flange. The taping point is a base point on the tread and has 70mm distance to rim inside plane7. The rolling circle is a circle passing through the taping point on the tread . The average diameter of rolling circle equals wheel diameter. The roundness can be derived from diameters at different positions on the rolling circle. The diameter difference is the difference between left and right wheel. These parameters belong to geometric parameters. 2.2 Measuring principle The measuring principle of diameter parameters is based on the projection imaging of structured light beam. Fig.3 is the schematic diagram. According to the definition of diameter parameters, the diameter can be deduced if the rolling circle was obtained. The left-right movement was unavoidable while the vehicle was running. So the position of rolling circle was uncertain. A laser displacement sensor was used to acquire the position of rim inside plane in real time. So the position of rolling circle was also obtained. Two laser lines from semiconductor source illuminated on the surface of tread along the direction of rolling circle plane. The rolling circle was between the two lines. The space between two lines was designed to ensure the rolling circle was always between them. The incident optical plane of light source paralleled with the rolling circle plane and two bright light strips were formed on the tread surface. The narrow strips recorded the diameter information of wheel. If a CCD sensor captured the strips image at a certain angle relative to the incident optical plane, the profile information was recorded in the image . Then the geometric parameters can be calculated by digital image processing method. 2.3 Position the rim inside plane The position of taping point should be obtained before measuring the diameter. It means that the position of rim inside plane should be determined firstly according to Fig.1. The position of rim inside plane was varied because different wheel set had different rim inside distance. The measuring accuracy of diameter was directly influenced by the position accuracy of rim inside plane. A precision laser displacement sensor was used to acquire the position of rim inside plane accurately based on the triangulation principle. The sensor had color compensation function to adapt the change of surface color. The position accuracy was 0.03mm and response time was less than 1ms. The characteristic can meet the online measuring need. 2.4 Image acquisition and processing For image acquiring, the key problem is how to obtain the clear tread profile at certain position. So the relative position of light source, CCD and wheel detecting sensor is very important. Because the movement of the train will results in overlap of consecutive two field images, the CCD cannot work in mode of frame. Only the single field image will be acquired or the CCD supports the progressive scan mode. In order to obtain clear image, the exposure time must very small and the CCD and image acquisition card must support asynchronous reset function. The moment of acquiring is controlled by wheel detecting sensor. The output of wheel detector triggers the acquisition of image in real time. The images are acquired by high-speed image acquisition card with DSP function. Tread FlangeFig. 1: the profile of wheel section. 70 mmRim inside planeTaping point Left wheel Right wheel Wheel set Axle Rolling circle Rolling circleRim inside plane the wheel set. The natural light had influence on the captured original image. In order to improve the original image quality and obtain high image SNR, a set of narrow band-pass optical filters which wavelength matched with laser source were added in front of CCD lens. Besides, the electronic exposure time of CCD was controlled to avoid the image blur. The resolution of CCD was 1024768. The central wavelength of laser source was 650nm. The band width was 15nm. The electronic exposure time was set to 1/10000s. The original profile curve image was diffused because the laser line had 1.0mm width. The one pixel width central line of the profile curve was obtained by applying (1)geometric correction, (2)window adjacent average smoothing, (3)threshold segmentation, (4) thinning, (5)edge tracing, and (6)curve fitting algorithm. Fig.4 showed the digital image processing results (photography condition: speed: 5.6km/h, power of laser source: 20mw, resolution of CCD: 1024x768, shutter time: 1/10000s, light wavelength: 650nm, band width: 15nm, distance between 2 lines: 5mm, width of line:1.0mm). 2.5 Measurement of wheel diameter Based on Fig.4 and the position of rim inside plane decided by laser displacement sensor, a rolling circle was fitted according to the relative position between two lines and base point. The object-image relation and magnifying ratio were determined by the optical imaging system and will be used in the calculation process. Diameter of a circle was certain if 3 points coordinates were known on an arc. A serial of diameters at different positions could be deduced based on Fig.5. If image was acquired while vehicle rolled to different position, many other diameter values could be concluded, then wheel diameter was the average of these diameters. The roundness could also be deduced according to the distribution of these diameters. The diameter difference is the maximum difference between left and right wheel diameters. 3 Measuring system The schematic diagram of measuring system based on the above detecting principle showed in Fig. The system consisted of wheel detector, precision laser displacement sensor, laser line source, CCD and lens, optical narrow-band filter, signal processing and isolated amplifying circuits, image acquisition circuits, interface circuits, control circuits and industrial controlled computer. The arrangement of measuring units was symmetrical. Two to three measuring units every side were necessary in order to ensure the precision and reliability. All of the initial data and measured parameters were transferred to database and could be transmitted to central control computer by Internet for further processing and analyzing. In the detecting process, the laser source, CCD and laser displacement sensor didnt contact with the wheel set. This method had high position accuracy and simplified the image acquisition equipment. The non-contact measuring manner was easy to maintaining and had characteristics of high reliability, high accuracy and repeatability. 4 Error analysis The measuring precision was influenced by many factors, such as lens aberrance, CCD resolution, trigger error produced by wheel detector, movement error, location error of rim inside plane, error produced by the vibration, image acquisition and processing error etc. The measuring units were fixed and vibrated with the railway and wheel, so the vibration error can be ignored. In these factors, the movement and trigger error were the main error source. 4.1 Movement error If the running speed was 10km/h and the exposure time was set to 1/10000 second, the movement error e will be 0.278mm. 4.2 Trigger error The trigger moment may delay or ahead of the designed time and position. So the image acquisition was also different to the scheduled time. If the response speed of wheel detector was 100 kHz, the position trigger error will be less than 0.1 mm. 4.3 General error The position accuracy of laser displacement sensor was 0.03mm. The algorithm error of image processing was one element. Movement and trigger error were 0.278 mm and 0.1mm relatively. Experimental results showed the general error of diameter measuring was within 1.0 mm. 5 Conclusion A new method for wheel set diameter measuring was introduced in running condition. The method combined optoelectronic measuring and digital image processing technology together and realized the non-contact automatic measuring of diameter parameters. The dynamic measuring system was designed. The measuring accuracy of diameter parameters was less than 1.0mm. The repeatability and accuracy of the system can meet the demand of online wheel set maintaining. Acknowledgements The paper was supported by (1) Zhejiang Provincial Natural Science Foundation of China (Y104578), (2) Education Department of Zhejiang Province of China (20040446) and (3) Science and Technology Department of Zhejiang Province of China (2005C31064). References 1 Zuo Jianyong, Zhou Wenxiang, Zeng Jing, et al, “Experimental research on measuring wheel rim profile using laser sensor”, Railway Vehicle, 40(2): 11-13, 2002. 2 Zheng Fenfang, Liu Ji, Fan Peixin, “Measuring wheel set tread profile using digital camera”, Railway Vehicle, 40(1): 19-22, 2002. 3 Wu Kaihua, Yan Kuang, “Research on the method of measuring defects of wheel set tread using optoelectronic technique”, Optical Technique, 31(3): 465-467, 2005. 4 Wu Kaihua, Zhang Jianhua, Yan Kuang, Jiang Peng, “Optoelectronic Automatic Measuring System for Wheel Set Parameters”, Chinese Journal of Scientific Instrument, 27(3): 298-301, 306, 2006. 5 Wang Hao, Wang Li, Gao Xiaorong, “Application of electro-magnetic and ultrasonic technology in the detection of wheel and the processing of detection signals”, Locomotive & Rolling Stock Technology, 6, 34-36, 2004. 6 Yan Kuang, Wu Kaihua, Wang Ruirong, Jiang Peng, “Theoretical research on the measuring method of the running wheel set tread defects based on optoelectronic technique”, Proc. of SPIE, 6150, 61502w-1-61502w-7, 2006. 7 Train Vehicle 1998 No.2, “Assemble and Regulation of Cargo Wheel set and Rolling Axle”, Beijing: China Railing Press, 1998. Fig.7: measurement flow chart. I/O control Image acquisition Data acquisition Industrial Computer Database Image processing measuring unitTrigger control Data processing对轮副直径参数的联机测量办法与测量系统WU Kaihua, ZHU Feng, ZHUANG Fei, YAN Kuang杭州电子大学自动化学院 中国杭州 310018 Email: 关键词:轮辐直径,联机测量,光电测量,自动测量系统摘要:轮辐直径参数的测量是确保车辆系安全运行的一个重要环节。车轮的磨损程度与列车增加的速度成正比。这篇论文介绍了当列车在以5-10千米/时的低速运行时,运用光电探测技术的一种对运行中的齿轮的直径参数联机测量的方法。此法利用精密激光位移传感器,高速高分解CCD和数字图象处理技术实现轮辐参数的无接触自动测量。这些参数主要包括直径,圆度及直径偏差。测量的精确度的主要影响方面是对机械装置,震动装置和启动装置的误差的分析。自动测量系统因此而生。此系统包含车轮探测器,激光位移传感器,半导体激光器来源,CCD,联机图象搜索器处理电路。理论与实践的结果表明,直径参数的测量精确度在1.0毫米内。此精确度与联机直径测量的要求正好符合。1 绪论为了确保运行中的列车的安全,自动地规律地探测轮辐的状况很重要。轮辐的磨损度是影响列车运行的安全性,稳定性的几个主要方面之一。在中国,轮辐磨损度的测量方法仍是静止的,人工的,而这限制了它的准确性与可靠性。不同的操作人员得出的结果往往大不相同,探测效率也很低。近年来,其运行速度已达到160-200千米/时。但其磨损的程度与速度比以前快了很多。静止的人工的测量方法已不能适应高速列车的发展。探索自动联机的方法是运输与维修部门的紧急需要。轮辐的磨损参数包括几何参数与表面缺陷。主要的几何参数包括边缘厚度,边缘高度,车轮直径,圆度,直径差异等等。表面缺陷包括车轮支撑面上的擦伤,发裂。这些参数是影响车辆安全性,稳定性的主要方面。这篇论文主要介绍联机直径参数的测量方法与测量系统。至今为止,尤其在中国,大多数维修工厂仍通过手动使用专门的机械工具来测量几何参数。这些工具包括专业游标弯脚规,车轮直径尺,内边缘距离尺,会磨损坏掉。这些工具的使用程度会影响测量效果。手动人工的工作方式带来的是高强度劳动量和低工作效率。不同操作员引起的人为因素可能会产生各种各样的不同的误差,其测量精密度,可靠性,可重复性不符合轮辐维修部门的要求。自动测量方法与系统已被研究多年1,2,3,4。而这些方法仅仅适合于维修工厂,而且车辆要被分解。一些国家,例如德国5,日本,意大利和美国,已不同原则地发展了联机检测系统。这些系统非常昂贵,还没有被广泛使用。在中国,这个领域也有研究6,但没有实际的设备发展。正常的测量与维修不能满足维修的要求。轮廓参数的联机测量在低速运行的列车对于区别与预测失误很重要。预防的维修会大大降低维修成本。这篇论文介绍一种新的无接触直径参数联机测量方法与系统。2 测量方法2.1 直径参数的定义车辆系的轮辐是通过挤压两个车轮形成一个轮轴的卷型部分。图.1是载物轮区域的轮廓(PROFILE)。滑动面(TREAD)是指与铁轨接触的部分。右平面是指内边缘平面。平面与铁轨不接触,没有磨损。内边缘平面与滑动面(TREAD)之间的部分叫轨底。绝缘绕阻点是指在滑动面上的一个基本点,距离内边缘平面70毫米7。齿轮的滚动圆是指过滑动面上绝缘绕阻点的一个圆圈。滚动圆的平均直径等于车轮直径。圆度得自不同位置滚动圆的直径。直径差异是指左右车轮的差异。这些参数属于几何参数。2.2测量原则直径参数的测量原则是基于由光束组成的图象设计。根据直径参数的定义,如果可以获得滚动圆,直径可以推断出来。当车辆运行时,左右机械装置不可避免的,所以滚动圆的位置是无法确定的。激光位移传感器被用来获取内边缘平面的位置,这样滚动圆的位置就可以确定了。两道来自半导体激光器的光束沿着滚动圆的滚动方向照亮滑动面表面。滚动圆在两道光束之间。两道光束间的空隙的设计是为了确保滚动圆总在这里。外来的视觉光源平面并列滚动圆平面,两道亮光带在滑动面上形成。较窄的光带记录车轮的直径信息。若CCD感应器在与外来视觉平面相关的某一角度获取了图像带,轮廓信息图像中就可以记录轮廓信息。然后几何参数就能够通过数字图像处理方法记录下来。2.3内边缘平面的位置在测量直径之
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。