



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数的图象和性质教学设计1. 本章的内容和地位在义务教育数学课程中,对二次函数的课程内容做出了以下五点要求:(1)通过对实际问题的分析,体会二次函数的意义. (2)会用描点法画出二次函数的图象,通过图象了解二次函数的性质. (3)会用配方法将数字系数的二次函数的表达式化为y=a(x-h)2+k的形式,并能由此得到二次函数的顶点坐标,说出图象的开口方向,画出图象的对称轴,并能解决简单实际问题. (4)会利用二次函数的图象求一元二次方程的近似解. (5)*知道给定不共线三点的坐标可以确定一个二次函数. 学习二次函数有利于学生继续学习和研究指数函数、对数函数、幂函数等基本初等函数的性质. 2. 本课的内容和地位在教学中,本章内容共安排了13个课时,其中第26.1节“二次函数及其图象”包含了7个课时. 教学中为了突出学生的主体地位,适应学生的认知需求,在本章起始课上,我让学生从已有知识和经验出发,自己定义出一类可称为“二次函数”的新函数,并探讨对这类函数的进一步研究设想. 结合一次函数的研究经验,依据从特殊到一般的原则,部分学生提出了如下的研究思路:y=ax2(a0)y=ax2+c(a0)y=ax2+bx(a0)y=ax2+bx+c(a0)二、学生学情分析授课班级的学生程度较好,基础扎实,思维灵活,具备一定的探索数学问题的能力,并乐于探究具有一定挑战性的问题. 在知识基础方面,学生八年级时学习了一次函数和反比例函数,会用描点法绘制函数图象,会用待定系数法求函数解析式,能够借助函数图象描述出函数的简单性质,能够理解函数的解析式、图象和性质之间的内在联系. 通过二次函数一章前几课时的学习,学生已经了解到二次函数的图象是抛物线,会用不共线的三点坐标求出二次函数的解析式,掌握了形如y=ax2+c(a0)的二次函数的图象和性质,并能从解析式上对函数的最值、对称性、增减性等特征进行说明. 三、教学目标设置1. 教学目标(1)会将数字系数的二次函数的表达式化为y=a(x-h)2+k(a0)的形式,并确定其开口方向、对称轴和顶点坐标;(2)经历从特殊到一般的研究过程,体会数与形的内在联系;(3)能利用二次函数的图象特征推测函数的性质,并利用二次函数的解析式对其图象特征进行解释和判断;(4)感受数学的直观性、抽象性、严谨性,在方法迁移的过程中获得成功的体验. 2. 教学重点、教学难点教学重点:形如y=ax2+bx(a0)的数字系数的二次函数的图象与性质. 教学难点:从解析式的角度对二次函数图象的对称性进行说理论证. 四、教学策略分析1. 教学面临的问题对本课而言,学生要掌握用配方的方法将数字系数的二次函数化为y=a(x-h)2+k(a0)的形式,这需要考虑以下问题:(1)在学生提出的研究思路中,y=ax2+bx(a0)和y=ax2+bx+c(a0)两种形式的二次函数所使用的方法本质上是一样的,应当通过教学让学生意识到这种关系,使知识融合为一体;(2)在研究以上两种形式的二次函数时,如果直接面对解析式,学生可能在绘制图象时已经遇到障碍,根据描出的有限几个点确定不出顶点或对称轴的位置,让代数变形的探究缺乏支撑;(3)由于本课所研究的问题有一定难度,容易让学生感觉枯燥,所以问题情境的设计要尽量新颖、浅显,保护学生的积极性。2. 教学方法的选择本课主要采用了教师启发讲授和学生探究相结合的方法,包括教师的启发讲授、提问、演示,以及学生的练习、展示、讨论等过程. 五、教学过程设计1.为达到教学目标,我为本课设计了四个教学环节,教学流程如下:【环节1】温故求新【环节2】探究求解【环节3】推广迁移【环节4】总结提升通过巩固已学过的二次函数定义和画函数图象在步骤,引出本课需要研究的问题.从图象入手,寻求解析式与图象特征之间的联系,找到研究二次函数y=x2和y=-x2的方法.通过研究方法推广到形如y=ax2的二次函数,体会知识和方法之间的联系.对研究函数的一般思路和方法进行总结,并布置作业. 2. 总结提升这节课我们主要研究了形如y=ax2+bx(a0)和y=ax2+bx+c(a0)的二次函数的图象与性质. 【想一想】(1)对于函数性质的研究,你有什么心得?(2)我们还能从哪些方面继续研究二次函数的性质呢?从研究思路来看,在研究某一类函数的性质时,通常先从形式较简单的特殊情形开始研究,比如在二次函数中我们先研究形如y=ax2的一类二次函数,再逐渐过渡到一般形式的二次函数. 从研究方法来看,图象能帮助我们直观把握函数的一些特征,而通过分析解析式能让研究的过程更严谨、结论更可靠. 就像著名数学家华罗庚先生所说:“数缺形时少直觉,形缺数时难入微. 数形结合百般好,隔离分家万事非. ”【课后练习】(1)试研究二次函数的图象和性质; (1)满足条件的m 的值;(2)m为何值时,抛物线有最低点?求出这个最低点, 这时当x 为何值时,y 随x 的增大而增大?(3)m为何值时,函数有最大值?最大值是多少? 这时当x 为何值时,y 随x 的增大而减小?【设计说明】在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论