数学北师大版九年级下册最大面积是多少.7最大面积是多少课件.ppt_第1页
数学北师大版九年级下册最大面积是多少.7最大面积是多少课件.ppt_第2页
数学北师大版九年级下册最大面积是多少.7最大面积是多少课件.ppt_第3页
数学北师大版九年级下册最大面积是多少.7最大面积是多少课件.ppt_第4页
数学北师大版九年级下册最大面积是多少.7最大面积是多少课件.ppt_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第七节最大面积是多少 清远市松岗中学陈杰 第二章二次函数 一 复习与回顾 2 函数 的对称轴是 向下 3 5 大 y 5 x 5 5 25 大 y 25 小结 二次函数最值主要看a值 顶点坐标的y的值就是最值 x 二 新课引入 思考 已知矩形周长为20cm 如果令矩形面积为ycm2 一边长为xcm 那么x是多少时 矩形的面积最大 最大面积是多少 整理得 y x2 10 x x 5 2 25 启发 对于最大面积问题 可以通过构建面积与边长的二次函数关系模型来解决问题 答 边长为5cm时 矩形的面积最大 最大面积是25cm2 1 设矩形的一边AB xm 那么AD边的长度如何表示 2 设矩形的面积为ym2 当x取何值时 y的值最大 最大值是多少 三 新课 最大面积是多少 如图 在一个直角三角形的内部作一个矩形ABCD 其中AB和AD分别在两直角边上 F E CBE FAE 30 40 分析 1 设矩形的一边AB xm 那么AD边的长度如何表示 2 设矩形的面积为ym2 当x取何值时 y的值最大 最大值是多少 答 x 20m时 面积最大 最大面积为300m2 1 理解问题 最大面积 解决问题的基本思路 2 分析问题中的变量和常量 以及它们之间的关系 3 用数学的方式表示出它们之间的关系 构建二次函数模型 4 运用数学知识求解 5 检验结果的合理性 给出问题的解答 归纳总结 1 如果设矩形的一边AD xm 那么AB边的长度如何表示 2 设矩形的面积为ym2 当x取何值时 y的值最大 最大值是多少 如图 在一个直角三角形的内部作一个矩形ABCD 其中AB和AD分别在两直角边上 xm 四 变一变 议一议 FDC FAE 30 40 分析 1 如果设矩形的一边AD xm 那么AB边的长度如何表示 2 设矩形的面积为ym2 当x取何值时 y的值最大 最大值是多少 如图 在一个直角三角形的内部作一个矩形ABCD 其中AB和AD分别在两直角边上 xm 答 当AD 15米时 面积最大 最大面积为300m2 某建筑物的窗户如图所示 它的上半部是半圆 下半部是矩形 制造窗框的材料总长 图中所有的黑线的长度和 为15m 1 用含有x的式子表示y 2 当x等于多少时 窗户通过的光线最多 结果精确到0 01m 此时 窗户的面积是多少 五 做一做 答 略 1 建立二次函数模型解决最大面积问题 2 学会了利用数学方法解决实际问题 几何问题和代数知识互相结合 3 进一步感受了数学建模思想和数学知识的应用价

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论