


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数的表达式(第1课时)练习题1. 抛物线y=a(x1)2+4经过点A(1,0),求该抛物线的解析式。2.已知抛物线y=x2+bx+c经过点A(3,0),B(1,0)求抛物线的解析式3.已知抛物线与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3)求抛物线的解析式。4. 已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3)求抛物线的函数表达式。5.抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线x= ,求抛物线的解析式。6. 如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tanBAO=3,将此三角形绕原点O逆时针旋转90,得到DOC,抛物线y=ax2+bx+c经过点A、B、C求抛物线的解析式。参考答案:1. 抛物线y=a(x1)2+4经过点A(1,0),求该抛物线的解析式。分析:将A坐标代入抛物线解析式,求出a的值,即可确定出解析式;解:(1)将A(1,0)代入y=a(x1)2+4中,得:0=4a+4,解得:a=1,则抛物线解析式为y=(x1)2+4;2.已知抛物线y=x2+bx+c经过点A(3,0),B(1,0)求抛物线的解析式分析:根据抛物线y=x2+bx+c经过点A(3,0),B(1,0),直接得出抛物线的解析式为;y=(x3)(x+1),再整理即可, 解答:解:抛物线y=x2+bx+c经过点A(3,0),B(1,0)抛物线的解析式为;y=(x3)(x+1),即y=x2+2x+3,3.已知抛物线与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3)求抛物线的解析式。分析:由于A(1,0)、B(3,0)、C(0,3)三点均在坐标轴上,故设一般式解答和设交点式(两点式)解答均可解答:解:抛物线与y轴交于点C(0,3),设抛物线解析式为y=ax2+bx+3(a0),根据题意,得,解得,抛物线的解析式为y=x2+2x+34. 已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3)求抛物线的函数表达式。分析:把点A、B、C代入抛物线解析式y=ax2+bx+c利用待定系数法求解和设交点式(两点式)解答均可;解:(1)抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3),解得,所以抛物线的函数表达式为y=x24x+3;5.抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线x= ,求抛物线的解析式。分析:根据抛物线的对称轴得到抛物线的顶点式,然后代入已知的两点再由待定系数法求解即可;解答:解:设抛物线的解析式把A(2,0)C(0,3)代入得:解得:即6. 如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tanBAO=3,将此三角形绕原点O逆时针旋转90,得到DOC,抛物线y=ax2+bx+c经过点A、B、C求抛物线的解析式;分析:先求出A、B、C的坐标,再运用待定系数法就可以直接求出二次函数的解析式;解答:解:在RtAOB中,OA=1,tanBAO=3,OB=3OA=3DOC是由AOB绕点O逆时针旋转90而得到的,DOCAOB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030工业自动化控制系统市场容量测算与细分领域投资机会研究报告
- 2025-2030工业自动化传感器技术突破方向与市场规模预测分析报告
- 2025-2030工业级3D打印金属粉末材料市场集中度与客户认证流程
- 2025-2030工业物联网边缘计算节点对封装晶体振荡器选型指南
- 电机与电器技术面试题及答案
- 智慧医院信息化创新创业项目商业计划书
- 家畜疾病快速诊断技术服务创新创业项目商业计划书
- 废旧汽车回收创新创业项目商业计划书
- 智能工作室共享创新创业项目商业计划书
- 小麦与文化创意产品结合创新创业项目商业计划书
- 厨房规划和设计行业营销策略方案
- 综合仓储物流服务合同
- 高中英语:倒装句专项练习(附答案)
- 土地承包经营权长期转让协议
- 成人糖尿病食养指南(2023年版)
- 地方病防治技能理论考核试题
- 四川省高等教育自学考试自考毕业生登记表001汇编
- (2024版)初级茶叶加工工理论知识考试题库(含答案)
- 北京市-实验动物上岗证培训考试题库
- 不锈钢加工及安装合同集合
- 妊娠期高血压用药
评论
0/150
提交评论