




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数列复习课一、知识结构:二、重点知识回顾数列的概念及表示方法()定义:按照一定顺序排列着的一列数()表示方法:列表法、解析法、图象法()分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为单调数列、摆动数列和常数列()与的关系:2等差数列和等比数列的比较()定义:从第2项起每一项与它前一项的差等于同一常数的数列叫等差数列;从第2项起每一项与它前一项的比等于同一常数(不为0)的数列叫做等比数列()递推公式:()通项公式:()性质等差数列的主要性质:单调性:时为递增数列,时为递减数列,时为常数列若,则特别地,当时,有成等差数列等比数列的主要性质:单调性:当或时,为递增数列;当,或时,为递减数列;当时,为摆动数列;当时,为常数列若,则特别地,若,则,当时为等比数列;当时,若为偶数,不是等比数列若为奇数,是公比为的等比数列三、典例剖析典例一:等差、等比数列的概念与性质例1. 已知数列 (1)求数列的通项公式; (2)求数列解:(1)当;、 当,、 (2)令 当; 当 综上,例2已知等差数列的前n项和为,且,. 数列是等比数列,(其中). (I)求数列和的通项公式;(II)记.解:(I)设数列的公差为d,则 . 设等比数列的公比为, . (II) 作差: . 典例二:求数列的通项与求和例3.将全体正整数排成一个三角形数阵:123456789101112131415按照以上排列的规律,第行()从左向右的第3个数为 解:前n1 行共有正整数12(n1)个,即个,因此第n 行第3 个数是全体正整数中第3个,即为例4.图(1)、(2)、(3)、(4)分别包含1个、5个、13个、25个第二十九届北京奥运会吉祥物“福娃迎迎”,按同样的方式构造图形,设第个图形包含个“福娃迎迎”,则;解:第1个图个数:1第2个图个数:1+3+1第3个图个数:1+3+5+3+1第4个图个数:1+3+5+7+5+3+1第5个图个数:1+3+5+7+9+7+5+3+1=,所以,f(5)41f(2)-f(1)=4,f(3)-f(2)=8,f(4)-f(3)=12,f(5)-f(4)=16典例三:数列与不等式的联系例5.已知等比数列的首项为,公比满足。又已知,成等差数列。 (1)求数列的通项 (2)令,求证:对于任意,都有(1)解: (2)证明: , 典例四:数列与函数、概率等的联系例6.已知函数.()设an是正数组成的数列,前n项和为Sn,其中a1=3.若点(nN*)在函数y=f(x)的图象上,求证:点(n,Sn)也在y=f(x)的图象上;()求函数f(x)在区间(a-1,a)内的极值. ()证明:因为所以(x)=x2+2x, 由点在函数y=f(x)的图象上, 又所以 所以,又因为(n)=n2+2n,所以, 故点也在函数y=f(x)的图象上.()解:,由得.当x变化时,的变化情况如下表:x(-,-2)-2(-2,0)0(0,+)f(x)+0-0+f(x)极大值极小值注意到,从而当,此时无极小值;当的极小值为,此时无极大值;当既无极大值又无极小值.例7.将一骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为() 解:一骰子连续抛掷三次得到的数列共有个,其中为等差数列有三类:(1)公差为0的有6个;(2)公差为1或-1的有8个;(3)公差为2或-2的有4个,共有18个,成等差数列的概率为,选B典例五:数列与程序框图的联系例8.根据如图所示的程序框图,将输出的x、y值依次分别记为;()求数列的通项公式;()写出y1,y2,y3,y4,由此猜想出数列yn;的一个通项公式yn;()求解:()由框图,知数列 ()y1=2,y2=8,y3=26,y4=80.由此,猜想()zn=1(31)+3(321)+(2n1)(3n1)=13+332+(2n1)3n1+3+(2n1)记Sn=13+332+(2n1)3n, 则3Sn=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年EPS线条产品绿色供应链合作履行责任合同
- 2025年度高端协议离婚方案策划及全程执行服务合同
- 2024社区《网格员》高频真题汇编含答案
- 2025年陕西省商洛事业单位考试模拟考试题库含答案
- 加盟代理业务招募合同书范本
- 2025年二级注册结构工程师题库汇编带答案解析
- 2024征信知识竞赛题库及参考答案
- 英语毕业论文开题报告
- 2025年人力资源三级考试真题及答案有答案
- 中文系毕业论文选
- 公共基础知识试题(附答案)
- 2025年湖北省中考语文真题(含答案)
- 战术基础动作低姿匍匐
- 2025年公文核改竞赛试题及答案
- 2025年秋季学期开学第一次中层班子会上校长精彩讲话:向小处看往实里干朝远处谋
- 有机硅行业面试攻略:高级岗位面试题库
- 2025历年退役军人考试题库及答案
- 第一二单元月考综合试卷(试题)四年级上册数学沪教版
- 2025级新生军训开训仪式动员大会
- 农产品质量安全标准体系与实施路径-洞察及研究
- 专利分级管理办法
评论
0/150
提交评论