




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
菱形的判定教学设计 教材版本: 人教版八年级下册 学 校:第四师七十七团中学姓 名:魏 红菱形的判定教学设计【教材分析】在本章的学习中,教材已研究了平行四边形性质和判定、矩形性质和判定、菱形的定义和性质,学生已初步了解并掌握了特殊四边形的一些判定方法。本节知识,既是前面所学知识的延续和拓展,也为下一节学习梯形和其他平面图形作必要的知识储备。 本节课,将进一步丰富学生的数学活动经验,促进学生观察、分析、归纳、概括问题的能力和审美意识的发展,进一步渗透了“转化、类比”等数学思想方法。【学情分析】学生在此前已经学习了平行四边形的性质和判定、矩形的性质和判定、菱形的定义和性质,掌握了菱形性质的简单应用,学生在此基础上探究菱形的判定方法。由于八年级的学生对事物的感性认识丰富,正在向抽象思维转型,所以本节课本节课让学生在丰富的实践活动中,利用菱形的判定方法解决问题,促使学生从感性认识向理性思维发展,从形象思维向抽象思维转型。【三维目标】知识与技能:会判定一个四边形或平行四边形是菱形,会合理论证和计算。过程与方法:经历探究菱形判定条件的过程,并会利用菱形的判定方法解决实际问题。 情感态度与价值观:从学生已有的知识出发,让学生在动手操作、讨论交流、归纳总结的过程中,加深对菱形判定方法的理解,感受身边的数学,以及合作学习的成功,培养主动探求、勇于实践的精神,激发学习数学的热情,树立学好数学的信心。【重点】菱形的判定方法。【难点】引导学生探究菱形的判定方法,并利用菱形的判定方法解决实际问题。【教学方法】基于对教材和学生认知规律的考虑,在讲授新课时,引导学生通过数学活动猜想菱形的判定方法,再利用图形验证猜想,最后进行逻辑证明。【教具准备】 三角板【教学过程】活动1:引入新课,激发兴趣1、复习(1)菱形的定义:一组邻边相等的平行四边形是菱形。(2)菱形的性质:边:菱形的两组对边分别平行,四条边都相等; 角:菱形的两组对角分别相等,邻角互补;对角线:菱形的两条对角线互相平分;菱形的两条对角线互相垂直,且每一条对角线平分一组对角。2、导入: 要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?活动2:探究与归纳菱形的第二个判定方法【问题牵引】用一长一短两根细木条,在它们的中点处固定一个小钉子,做成一个可转动的十字架,四周围上一根橡皮筋,做成一个四边形。师问: 任意转动木条,这个四边形总有什么特征?你能证明你发现的结论吗?(平行四边形左图)继续转动木条,观察什么时候橡皮筋周围的四边形变成菱形?你能证明你的猜想吗?学生猜想:对角线互相垂直的平行四边形是菱形。教师提问:这个命题的前提是什么?结论是什么?学生用几何语言表示命题如下:已知:在ABCD中,对角线ACBD,求证:ABCD是菱形。分析:我们可根据菱形的定义来证明这个平行四边形是菱形,由平行四边形的性质得到BO=DO,由AOB=AOD=90及AO=AO,得AOBAOD,可得到AB=AD (或根据线段垂直平分线性质定理,得到AB=AD) ,最后证得ABCD是菱形。【归纳定理】通过探究和进一步证明可以归纳得到菱形的第二个判定方法(判定定理1):对角线互相垂直的平行四边形是菱形。提示:此方法包括两个条件(1)是一个平行四边形;(2)两条对角线互相垂直。对角线互相垂直且平分的四边形是菱形。分析:(1)通过制作木条,让学生初步认识图形,并利用平行四边形的判定方法得出图形总是平行四边形。既为菱形的第二种判定方法的探究作好了知识上的铺垫,又巩固了平行四边形的判定方法,培养学生的合情推理能力。 (2)通过实验操作,让学生带着问题,经历探究物体与图形的形状、大小位置关系和变换的过程,感受动手实验的乐趣,培养猜想的意识,感受直观操作得出猜想的便捷性,培养学生观察、实验、猜想等合情推理能力。(3)通过猜想和论证,进一步突出图形性质的探索过程,直观操作和逻辑推理有机结合,进一步让学生认识到逻辑推理的必要性,进一步让学生感受到逻辑推理是得出结论的重要手段,很好的突出了教学的重点。活动3:探究与归纳菱形的第三个判定方法【操作探究】通过摆一摆、剪一剪提问:观察操作的过程,你能说明得到的四边形为什么是菱形吗?你能得到什么结论?学生观察思考后,展开讨论,指出该四边形四条边相等,即有两组对边相等,它首先是一个平行四边形,又有一组邻边相等,根据菱形定义即可判定该四边形是菱形。得出从一般的四边形直接判定菱形的方法:四边相等的四边形是菱形。学生进行几何论证,教师规范学生的证明过程。【归纳定理】从一般的四边形直接判定菱形的方法(判定定理2):四边相等的四边形是菱形。分析:从简单的问题出发,运用菱形的判定方法判定四边形是菱形。让学生在证明过程中,掌握菱形的第二种判别方法的应用,达到“学数学,用数学”的目的,进一步培养学生解决问题的能力。通过独立思考、学生交流、完成证明等过程,进一步培养学生推理文章的能力。活动4:判定方法的应用例3 如图,如图,ABCD的对角线AC、BD相交于点O,且AB=5,AO=4,BO=3,求证:ABCD是菱形。 思路点拨:由于平行四边形对角线互相平分,构成了ABO是一个三角形,而AB=5,AO=4,BO=3,由勾股定理的逆定理可知AOB=90,证出对角线互相垂直,这样可利用菱形第二个判定方法证得。 活动5:相信你是最棒的小组长代表小组选一道题,所有组成员共同完成,然后各小组交叉批阅,培养学生合作探究学习的意识。作业:课本课后练习题板书设计:菱形的判定菱形的判定:1.一组邻边相等的平行四边形是菱形。 2四条边都相等的四边形是菱形; 3对角线互相垂直的平行四边形是菱形。课后反思:这节课我计划分如下板块: 第一板块:类比平行四边形的判定学习得出定义是判断一个图形的最基础的方法。从而引出本节课的课题菱形的判定;第二板块:用学生的猜想引入,引导学生探索获得菱形的判定,并进行证明;第三板块:菱形的判定的运用。觉得如下地方要改进:1、教师板书师范要完整,教师要带着学生仔细读题,边读题 ,边分析,逐步养成良好的读题、分析的习惯;2、多给学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行账户开户授权委托书模板
- 制造企业车间生产流程优化指南
- 安全生产标准化建设方案案例
- 公路养护养护方案及技术措施
- 租房合同纠纷调解技巧与案例
- 小学升初中数学辅导卷
- 园林景观设计方案与施工指导
- 基坑支护工程施工方案实例
- 建筑工程现场施工监理工作流程
- 经典文学作品教学指导手册
- 陪诊服务培训课件模板
- 严禁管制刀具进校园主题班会课件
- 2024年山东省春季高考技能考试汽车专业试题库-上(单选题汇总)
- 国庆、中秋双节前安全排查记录
- 八年级上学期轴对称练习题
- 双姿培训课件
- GB/Z 41082.2-2023轮椅车第2部分:按GB/Z 18029.5测得的尺寸、质量和操作空间的典型值和推荐限制值
- 实施项目经理岗位的工作职责描述
- 中频操作评分标准
- 生活中的理财原理知到章节答案智慧树2023年暨南大学
- GB/T 22588-2008闪光法测量热扩散系数或导热系数
评论
0/150
提交评论