



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
18.1.2 平行四边形的判定(一)教学目标知识与技能 1在探索平行四边形的判别条件中,理解并掌握用边、角、对角线来判定平行四边形的方法2会综合运用平行四边形的四种判定方法和性质来证明问题 3、 使学生熟练掌握平行四边形判定的五种方法,并通过定理,习题的证明提高学生的逻辑思维能力;进一步掌握平行四边形性质与判定之间的区别与联系。过程与方法经历平行四边形判定条件的探索过程,发展学生的合情推理意识和表述能力。情感态度与价值观培养学生合情推理能力,经及严谨的书写表达,体会几何思维的真正内涵。重点理解和掌握平行四边形的判定定理。难点几何推理方法的应用。教 学 过 程备 注教学设计 与 师生互动第一步:创景引入:老师提问:1、平行四边形定义是什么?如何表示?2、平行四边形性质是什么?如何概括?演示图片:选择各种四边形图片展示。提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?请学生通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?总结:平行四边形判定1 两组对边分别相等的四边形是平行四边形。平行四边形判定2 对角线互相平分的四边形是平行四边形。【探究】 取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?结论:一组对边平行且相等的四边形是平行四边形第二步:应用举例:例1(教材P96例3)已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF求证:四边形BFDE是平行四边形分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明(证明过程参看教材)问;你还有其它的证明方法吗?比较一下,哪种证明方法简单例2(补充) 已知:如图,ABBA,BCCB, CAAC求证:(1) ABCB,CABA,BCAC;(2) ABC的顶点分别是BCA各边的中点证明:(1) ABBA,CBBC, 四边形ABCB是平行四边形ABCB(平行四边形的对角相等)同理CABA,BCAC(2) 由(1)证得四边形ABCB是平行四边形同理,四边形ABAC是平行四边形 ABBC, ABAC(平行四边形的对边相等) BCAC同理 BACA, ABCBABC的顶点A、B、C分别是BCA的边BC、CA、AB的中点 例3、(补充)已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF 分析:证明BE=DF,可以证明两个三角形全等,也可以证明四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单 证明: 四边形ABCD是平行四边形, ADCB,AD=CD E、F分别是AD、BC的中点, DEBF,且DE=AD,BF=BC DE=BF 四边形BEDF是平行四边形(一组对边平行且相等的四边形平行四边形) BE=DF 此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路第三步:随堂练习1如图,在四边形ABCD中,AC、BD相交于点O,(1)若AD=8cm,AB=4cm,那么当BC=_ _cm,CD=_ _cm时,四边形ABCD为平行四边形;(2)若AC=10cm,BD=8cm,那么当AO=_ _cm,DO=_ _cm时,四边形ABCD为平行四边形2已知:如图,ABCD中,点E、F分别在CD、AB上,DFBE,EF交BD于点O求证:EO=OF3灵活运用课本P89例题,如图:由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察,分析发现:第4个图形中平行四边形的个数为_ _ (6个)第8个图形中平行四边形的个数为_ _ (20个)第四步:课堂小结: 希望同学们在证明每一道题时,认真分析已知条件,有些题可能是一题多解,比较一下使用哪种判定方法最简便。往往是已知条件最集中的地方,就是解决问题的突破口。学生掌握平行四边形的四个(或五个)判定方法,这些判定的方法是:从边看:两组对边分别平行的四边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师招聘之《幼儿教师招聘》从业资格考试真题附参考答案详解(突破训练)
- 地源热泵设备运行成本控制方案
- 虚拟主播跨平台适配方案
- 蜂产品企业品牌合作与联盟方案
- 折扣店库存管理自动化工作方案
- 一村一品乡村旅游环境整治方案
- 教师招聘之《小学教师招聘》考前冲刺测试卷附有答案详解附答案详解(综合题)
- 成都灯光秀施工方案设计
- 平南县加固改造施工方案
- 智能化家居施工方案范本
- 生理学(全套课件)
- 2022年东台市城市建设投资发展集团有限公司招聘笔试题库及答案解析
- 汉书-张骞传课件
- 民法典侵权责任编课件
- 市政道路养护工程监理工作
- 2022年初中化学新课标测试
- 练平舌音和翘舌音的绕口令
- 校企合作讲座精品PPT课件
- 煤矿电缆与电缆敷设标准
- T∕CATCM 008-2019 阿胶质量规范
- 防水堵漏施工合同
评论
0/150
提交评论