




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会“两点法”的简便,向学生渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。培养学生主动学习、主动探索、合作学习的能力。本节课为探索一次函数性质作准备。(一)教学目标的确定教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。1、知识目标(1)能用“两点法”画出一次函数的图象。(2)结合图象,理解直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响。2、能力目标(1)通过操作、观察,培养学生动手和归纳的能力。(2)结合具体情境向学生渗透数形结合的数学思想。3、情感目标(1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。(2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。(二)教学重点、难点 用“两点法”画出一次函数的图象是研究一次函数的性质的基础,是本节课的重点。直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响,是本节课的难点。关键是通过学生的直观感知、动手操作、合作交流归纳其规律。二、学情分析1、由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合“两点确定一条直线”,学生能画出一次函数图象。2、根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响有难度。所以教学中应尽可能多地让学生动手操作,突出图象变化特征的探索过程,自主探索出其规律。3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。三、教学方法我采用自主探究合作交流式教学,让学生动手操作,主动去探索,小组合作交流。而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。四、教学设计一、设疑,导入新课(2分钟)师:同学们,上节课我们学习了一次函数,你能说一说什么样的函数是一次函数吗?生1:函数的解析式都是用自变量的一次整式表示的,我们称这样的函数为一次函数。生2:一次函数通常可以表示为y=kx+b的形式,其中k、b为常数,k0。生3:正比例函数也是一次函数。师:(同学们回答的都很好)通过前面的学习我们可以发现,一次函数是一种特殊的函数,那么一次函数的图象是什么形状呢?这节课让我们一起来研究 “一次函数的图象”。(板书)二、自主探究小组交流、归纳问题升华:1、师:问(1)你们知道一次函数是什么形状吗?(4分钟)生:不知道。师:那就让我们一起做一做,看一看:(出示幻灯片)用描点法作出下列一次函数的图象。(1) y= 0.5x (2) y= 0.5x+2(3) y= 3x (4) y= 3x + 2师:(为了节约时间)要求:用描点法时,最少5个点;以小组为单位,由小组长分配,每人画一个图象。画完后,小组订正,看是否画的正确?然后讨论解决问题(1):观察你和你的同伴画出的图象,你认为一次函数的图象是什么形状?小组汇报:一次函数的图象是直线。师:所有的一次函数图象都是直线吗?生:是。师:那么一次函数y=kx+b(其中k、b为常数,k0),也可以称为直线y=kx+b(其中k、b为常数,k0)。(板书)师:(出示幻灯片)问(2):观察你和你的同伴所画的图象在位置上有没有不同之处?(2分钟)讨论正比例函数的图象与一般的一次函数图象在位置上有没有不同之处。小组1:正比例函数图象经过原点。小组2:正比例函数图象经过原点,一般的一次函数不经过原点。师出示幻灯片3(使学生再一次加深印象)师:问(3):对于画一次函数y=kx+b(其中k)b为常数,k0)的图象直线,你认为有没有更为简便的方法?(一边思考,可以和同桌交流)(2分钟)生1:用3个点。生2:老师我这个更简单,用两个点。因为两点确定一条直线嘛!生3:如画y=0.5x的图象,经过(0,0)点和(2,1)点这两个点做直线就行。师:我们都认为画一次函数图象,只过两个点画直线就行。(幻灯片4:师,动画演示用“两点法”画一次函数的过程)师:做一做,请你用“两点法”在刚才的直角坐标系中,画出其余三个一次函数的图象。(比一比谁画的既快又好)(4分钟)师:问(4):和你的同伴比一比,看谁取的那两个点更为简便一些?组1:若是正比例函数,我们组先取(0,0)点,如画y=0.5x的图象,我们再了取(2,1)点。这样找的坐标都是整数。组2:我们组认为尽量都找整数。组3:我们组认为都从两条坐标轴上找点,这样比较准确。如y=3x+2,我们取点(0,3)和点(-2/3,0)组4:我们组认为,正比例函数经过(0,0)点和(1,k)点;一般的一次函数经过(0,b)点和(-b/k,0)点。师:同学们说的都很好。我觉得可以根据情况来取点。2、师:我们现在已经用:“两点法”把四个一次函数图象准确而又迅速地画在了一个直角坐标系中,这四个函数图象之间在位置上有没有什么关系呢?问(1):(由自己所画的图象)观察下列各对一次函数图象在位置上有什么关系?(独自观察学生回答)(3分钟)y=0.5x与y=0.5x+2;y=3x与y=3x+2;y=0.5x与y=3x;y=0.5x+2与y=3x+2。生1:y=0.5x与y=0.5x+2;两直线平行。生2:y=3x与y=3x+2;两直线平行。生3:y=0.5x与y=3x;两直线相交。生4:y=0.5x+2与y=3x+2;两直线相交。师:其他同学有没有补充?生5:y=0.5x与y=3x都是正比例函数;两直线相交,并且交点是点(0,0)点。生6:老师,我也发现了y=0.5x+2与y=3x+2的图象相交,并且交点是点(0,2)。师:(出示幻灯片5)同学们回答都不错,我们要向生5和生6学习,学习他们的细致思考。师:问(2),直线y=kx+b(k0)中常数k和b的值对于两个函数的图象的位置关系平行或相交,有没有影响?说说你的看法。(5分钟)(学生自主探究小组交流、归纳师生共同总结)组1:我们组发现,常数k和b的值对于两个函数的图象的位置关系平行或相交,有影响,当k的值相同时,两直线平行;当k的值不同时,两直线相交。生:我认为他的说法不确切,当k值相同,且b值不同时,两直线相交。因为当k值相同,且b值也相同时,两个函数关系式不就成为一个函数关系式了吗?组2:我们组同意生的看法,当k值相同,且b值不同时,两直线平行;当k值不同时,两直线相交当k值相同,且b值不同时,两直线相交。组3:我们组还发现,当k值相同,且b值不同时,两直线相交;当k值相同,且b值也相同时,两直线相交的交点特殊。如y=0.5x与y=3x;相交,交点是(0,0)y=0.5x+2与y=3x+2,相交,交点是(0,2)。我们认为,当k值相同,且b值也相同时,两直线相交的交点是(0,b)。师:(出示小规律)同学们观察的都很仔细,回答很好,要继续努力!师:刚才同学说的,当k值相同,且b值也相同时,两个函数图象又是什么样的位置关系?(因为两直线的位置关系学生都会,所以学生很容易回答)生:重合。师:老师考一考你,有没有信心?生:有。师:(出示幻灯片6)不画图象,你能说出下列每对函数的图象位置上有什么关系吗?直线y=-2x-1与直线y=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 传统食品工业化生产2025年智能工厂改造项目进度控制报告
- 社渚镇民宅转让合同范本
- 灌溉项目合同协议书范本
- 碎石机械销售合同协议书
- 机动车销售服务合同范本
- 汽修厂多人合伙协议合同
- 湖南文理学院合作协议书
- 电动车出租合作合同范本
- 烘焙店工作合同范本模板
- 物业创意园租房合同范本
- 二升三数学综合练习 暑假每日一练60天
- 兵团连队综合管理办法
- 01-低血糖症科普知识讲座
- 2025年新疆维吾尔自治区生产建设兵团中考语文真题(解析版)
- (高清版)DB11∕T 509-2025 房屋建筑修缮工程定案和施工质量验收规程
- 初级电工考试题及答案2025
- 培训讲师培训课件
- 2025年广西中考地理试题(含答案)
- 护理事业十五五发展规划(2026-2030)
- 职业技术学院现代农业技术专业人才培养方案
- 京东618夏日歌会招商方案
评论
0/150
提交评论