




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.比例分配问题 例题:一所学校一、二、三年级学生总人数450人,三个年级的学生比例为2:3:4,问学生人数最多的年级有多少人? A.100 B.150 C.200 D.250 答案为C。解答这种题,可以把总数看作包括了234=9份,其中人数最多的肯定是占4/9的三年级,所以答案是200人。 2.路程问题 例题:某人从甲地步行到乙地,走了全程的2/5之后,离中点还有2.5公里。问甲乙两地距离多少公里? A.15 B.25 C.35 D.45 答案为B。全程的中点即为全程的2.5/5处,离2/5处为0.5/5,这段路有2.5公里,因此很快可以算出全程为25公里。 3.工程问题 例题:一件工程,甲队单独做,15天完成;乙队单独做,10天完成。两队合作,几天可以完成? A.5天B.6天C.7.5天D.8天 答案为B。此题是一道工程问题。工程问题一般的数量关系及结构是: 工作总量 _ =工作时间 工作效率 我们可以把全工程看作“1”,工作要N天完成推知其工作效率为1/N,两组共同完成的工作效率为1/N11/N2,根据这个公式很快可以得到答案为6天。另外,工程问题还可以有许多变式,如水池灌水问题等等,都可以用这种思路来解题。 4.植树问题 例题:若一米远栽一棵树,问在345米的道路上栽多少棵树? A.343 B.344 C.345 D.346 答案为D。这种题目要注意多分析实际情况,如本题要考虑到起点和终点两处都要栽树,所以答案为346。 数学运算(精彩!)1、某人连续打工24天,赚得190元(日工资10元,星期六做半天工,发半工资,星期日休息,无工资)。已知他打工是从1月下旬的某一天开始的,这个月的1号恰好是休息日。问:这人打工结束的那一天是2月几号?分析解答:工作一星期共赚钱1055=55(元), 190=5531025,所以24天恰是3个星期再加上星期四、星期五和星期六,由此我们可以知道打工开始这天是星期四。因为1月1日是星期日,所以1月22日也是星期日,1月下旬只有26号是星期四。从1月26号开始工作,第24天打工结束刚好是2月18日。2、李师傅加工一批零件,如果每天做50个,要比计划晚8天完成;如果每天做60个,就可提前5天完成,这批零件共有多少个?每天做50个,到规定时间还剩50*8=400个。每天做60个,到规定时间还差60*5=300个。规定时间是:(50*8+60*5)/(60-50)=70天零件总数是:50*(70+8)=3900个。更多更精彩!请回复!3、三件运动衣上的号码分别是1、2、3,甲、乙、丙三人各穿一件。现有25个小球。首先发给甲1个球,乙2个球,丙3个球。规定3人从余下的球中各取一次,其中穿1号衣的人取他手中球数的1倍,穿2号衣的人取他手中球数的3倍,穿3号衣的人取他手中球数的4倍,取走之后还剩下两个球。那么,甲穿的运动衣的号码是( )。 首先发出了1+2+3=6个球第二次又取出了25-6-2=17个球穿2号和3号球衣的人第二次取走的球都是3的倍数,穿1号球衣第二次取走的球不多于3,所以只能是2个,即是乙。甲丙二人第二次共取走17-2=15个。若甲穿3号球衣,丙穿2号球衣,两人第二次只能取走3*3+1*4=13个,若甲穿2号球衣,丙穿3号球衣,两人第二次取走1*3+3*4=15个。甲穿的是2号球衣。1.某校人数是一个三位数,平均每个班级36人,若将全校人数的百位数与十位数对调,则全校人数比实际少180人,那么原校人数最多可以达到多少人:A.900B.936C.972D.9902.27个小运动员在参加完比赛后,口渴难耐,去小店买饮料,饮料店搞促销,凭三个空瓶可以再换一瓶,他们最少买多少瓶饮料才能保证一人一瓶?A.21B.23C.25D.273.甲乙丙丁四个数的和为43,甲数的2倍加8,乙数的3倍,丙数的4倍,丁数的5倍减去4,都相等,问这四个各是多少?A.141289B.161296C.1110814D.1412984.某企业发奖金是根据利润提成的,利润低于或等于10万元时可提成10%;低于或等于20万时,高于10万元的部分按7.5%提成;高于20万元时,高于20万元的部分按5%提成。当利润为40万元时,应发放奖金多少万元?A.2B.2.75C.3D.4.55.甲、乙、丙三人现在年龄之得100岁。甲28岁时,乙是丙的2倍,乙20岁时,甲是丙的3倍。问三人现在的年龄各是多少岁?A.304624B.403822C.403624D.4238206.有一段木头用一根绳子来量,绳子多出150公分,将绳子对折后量,又短了35公分。问这段木头有多长?A.220B.250C.320D.3607.某商场1996年销售的A品牌电脑按台数统计,12月销售了120台。如按每月销售平均增长20%计算,预计1997年3月份比1月份多销售多少台?A.57B.58C.60D.63.8.甲1天做的工作等于乙2天做的工作,等于丙3天做的工作。现有一工程,甲2天可完成。问乙与丙合作要多少天完成?A.12天B.5天C.2.4天D.10天9.一只木桶,上方有两个注水管,单独打开第一个,20分钟可注满木桶;单独打开第二个,10分钟可注满木桶。若木桶底部有一个漏孔,水可以从孔中流出,一满桶水用40分钟流完。问当同时打开两个注水管,水从漏孔中也同时流出时,木桶需经过多长时间才能注满水?A.8分钟B.9分钟C.10分钟D.12分钟10甲、乙、丙三人共赚钱48万元。已知丙比甲少赚8万元,乙比甲少赚4万元,则甲、乙、丙赚钱的比是:A245B345C542D543答案及详细解析1C。解析:根据能被36整除和百位十位对调后相差180两个条件,用代入法可很快求得。2A。解析:代入法,购买21瓶可换回7瓶,显然满足。但本题有问题,如果计算本题,购买19平饮料即可。19瓶饮料可以换6瓶新的饮料,这六瓶又可以换得2瓶,一共得到19+6+2+1=28瓶。如果一定要说21时正确答案的话,那只能从口渴难耐四个字找原因了。只换一次,最少要购买21瓶。3D。解析:根据4个数的和为43、前三个数的关系,用带入法很容易得到答案。4B。解析:由题意,提成为1010%+107.5%+205%=2.75万元。5C。解析:根据题意,用代入法,易得答案。6A。解析:根据题意,绳子对折后刚好短了150+35=185公分,木头长185+35=220公分。7D。解析:根据题意,1月份销售1201.2=144台,3月份销售120=207台。207-144=63台。8C。解析:工程问题。甲两天的工作,乙需要4天完成,每天完成;丙需要6天完成,每天完成。乙丙合作,每天完成+=,全部完成需要125=2.4天。9A。解析:工程问题。第一个注水管每分钟注,第二个注水管每分钟注,漏孔每分钟漏,题设条件,每分钟注水+-=,需要8分钟注满。10.【答案】D。解析:甲赚了(48+8+4)3=20万元,乙为204=16万元,丙为208=12万元,则答案应为20:16:12=5:4:3。某足球赛决赛,共有32个队参加,他们先分成8个小组,决出16强,这16个队按照确定的程序进行淘汰赛,最后决出冠、亚军和第三第四名。共需要安排()场比赛 ?A 48 B 51 C 58 D 64共有32个队参加,他们先分成8个小组,决出16强每个组有4个小组,前两名出现,有C426种6*848这是前面决出16强后面决出冠军是16/2+8/2+4/2+2/2+18+4+2+1+11648+1664场嘿嘿,不知道对不对。对足球规则不是很懂在一次数学测验中,老师只出了两道题。结果全班有10个人全做对了,第一题有25人做对,第二题有18人做错,那么两道题都做错的有多少人为chenfang解答问题,发个帖子 甲乙两人分别从A,B两地相向而行, 甲比乙早出发1小时,当甲行5千米时发现 小钱包遗忘立即回A地取小钱包,在A地泡妞15分钟后继续往B地,与乙在中点处相遇,已知甲的速度是4千米/小时,乙的速度是3千米/小时,求AB两地间的距离?请列式并解答?(5/4)*2-1+0.25=1.75这个是乙比甲多走的时间(1.75+t)*3=t*4t=5.25所以路程为 (1.75+5.25)*3*2=425人的体重之和是423斤,他们的体重都是整数,并且各不相同,则体重最轻的人,最重可能重( )A、80斤 B、82斤 C、84斤 D、86斤5个80斤的,400,剩余23斤,分一下。从0 1 2 3 4 5 6 7中选,最轻只有选2了,如选3,则34567加起来超过23。所以82927 ,13 ,964 ,124 ,8125 ( ) A.9125 B.1124 C.1125 D.8125数学运算-还原问题“还原问题”怎样思考?【典型问题】1. 某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是多少?解答:(66+6)6-6=1,这个数是1.2.有砖26块,兄弟二人争着去挑。弟弟抢在前面,刚摆好砖,哥哥赶到了。哥哥看弟弟挑的太多,就抢过一半。弟弟不肯,又从哥哥那儿抢走一半。哥哥不服,弟弟只好给哥哥5块,这时哥哥比弟弟多挑2块。问最初弟弟准备挑多少块?解答:先算出最后各挑几块:(和差问题)哥哥是(26+2)2=14,弟弟是26-14=12,然后来还原:1. 哥哥还给弟弟5块:哥哥是14-5=9,弟弟是12+5=17;2. 弟弟把抢走的一半还给哥哥:抢走了一半,那么剩下的就是另一半,所以哥哥就应该是9+9=18,弟弟是17-9=8;3. 哥哥把抢走的一半还给弟弟:那么弟弟原来就是8+8=16块.3. 甲、乙、丙三人钱数各不相同,甲最多,他拿出一些钱给乙和丙,使乙和丙的钱数都比原来增加了两倍,结果乙的钱最多;接着乙拿出一些钱给甲和丙,使甲和丙的钱数都比原来增加了两倍,结果丙的钱最多;最后丙拿出一些钱给甲和乙,使甲和乙的钱数都比原来增加了两倍,结果三人钱数一样多了。如果他们三人共有81元,那么三人原来的钱分别是多少元?解答:三人最后一样多,所以都是813=27元,然后我们开始还原:1. 甲和乙把钱还给丙:每人增加2倍,就应该是原来的3倍,所以甲和乙都是273=9,丙是81-9-9=63;2. 甲和丙把钱还给乙:甲93=3,丙633=21,乙81-3-21=57;3. 最后是乙和丙把钱还给甲:乙573=19,丙213=7,甲81-19-7=55元.“和倍问题”怎样思考?【典型问题】1. 四年级有4个班,不算甲班其余三个班的总人数是131人;不算丁班其余三个班的总人数是134人;乙、丙两班的总人数比甲、丁两班的总人数少1人,问这四个班共有多少人?解答:用131+134=265,这是1个甲、丁和2个乙、丙的总和,因为乙、丙两班的总人数比甲、丁两班的总人数少1人,所以用265-1=264就刚好是3个乙、丙的和,2643=88,就是说乙丙的和是88,那么甲丁和是88+1=89,所以四个班的和是88+89=177人.2. 有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少?解答:大家想想,我如果把4个数全加起来是什么?实际上是每个数都加了3遍!大家一定要记住这种思想!(45+46+49+52)3=64就是这四个数的和,题目要求最小的数,我就用64减去52(某三个数和最大的)就是最小的数,等于12.3. 在一个两位数之间插入一个数字,就变成一个三位数。例如:在72中间插入数字6,就变成了762。有些两位数中间插入数字后所得到的三位数是原来两位数的9倍,求出所有这样的两位数。解答:对于这个题来说,首先要判断个位是多少,这个数的个位乘以9以后的个位还等于原来的个位,说明个位只能是0或5!先看0,很快发现不行,因为209=180,309=270,409=360等等,不管是几十乘以9,结果百位总比十位小,所以各位只能是5。略作计算,不难发现:15,25,35,45是满足要求的数微软招聘员工试题1. 有7克、2克砝码各一个,天平一架,如何只用这些物品三次将140克的盐分成50克、90克各一份?砝码称重是常见的数学问题。要使称的次数最少需要讲究方法技巧。经过思考按下述步骤操作:(1)把2克重的砝 放在天平左端,分盐于天平两端直到平衡,此时,左端有盐69克,右端有盐71克。(2) 取下天平左端的2克砝码换上7克重的砝码, 端重(69+7)76克,右端仍重71克,从左端取出5克盐后,天平两端平衡,这时左端 余64克盐。 在取下天平两端物品。(3) 用刚才称出的5克盐当作砝码,与2克、7克砝码合成14克砝码。从64克盐 取出14克,恰好剩下50克盐。则其余盐的重量就是90克。2. 有两个房间,其中一间房里有三盏灯,另一间房里有控制这三盏灯的开关。这两间房是相对独立、相对封闭的,没有空 上的直接联系;三盏灯与三个开关也没有顺序上的必然联系。现在只允许你分别进入这两个房间一次,然后判断三盏灯分别是由哪个开关控制的对于这个问题,我们更多 虑的可能是灯与线之间怎样连结及如何开关等,这样就步入了解题的歧途。利用灯亮的发热特性操作如下:(1) 先走进有开关的房间,将三个开关编号为A、B、C。(2) 将开关A打开数分钟后关闭,再打开B。(3)立即进入有灯的房间,此时亮着的灯则由开关B控制。用手摸另外两盏灯:发热的由开关A控制,不热的由开关C控制。3. U2合唱团赶往演唱会场,途中必需经过一座桥,天色很暗,而他们只有一只手电筒。一次 时最多 以有两人一起过桥,而过桥的时候必须持有手电筒,所以就得有人把手电筒带来带去,来回于桥的两端。手电筒是不能用丢的方式来传递的。四个人的步行速度各不同,若两人同行则以较慢者的速度为准。Bono需花1分钟过桥,Edge需花2分钟过桥,Adam需花5分钟过桥,Larry需花10分钟过桥,他们如何在17 钟内过桥?此题属于策略优化问题。从题中我们知道,同行两人的过桥时间应该尽量接近,且来回传递电筒者应尽量选用速度快的人。根据以上分析,作如下安排:(1) Bono和Edge两人先行过桥后,Bono带手电 回,共用时3分钟。 2) Adam和Larry两人同时过桥,Edge带手电返回。共用时12分钟。(3) Bono和Edge两人再次过桥,用时2分钟。至此,四人全部过桥,一共用时3+12+2=17(分钟)。4. 有一列火车以每小时140千米的速度离开洛杉矶直奔纽约,同时,另一列火车以每小时160千米的速度从纽约开往洛杉矶。如果有一只鸟以每小时30千米的速度和两列车同时启动,从洛杉矶出发,碰到另一列车后返回,往返在两列火车间,直到两列火车相遇为止。已知洛杉矶到纽约的铁路长4500千米,请问,这只小鸟飞行了多远路程?小鸟在两列火车之间往返飞行,思维也很容易随着跑起来。如果我们试图算出那些越来越短的路程,问题就会十分复杂。其实大可不必,因为这只小鸟一直在两列火车间一刻不停地飞,所以,火车的相遇时间就是小鸟的飞行时间。这样,小鸟的飞行路程为:304500(140+160)=450(千米)。5. 对一批编号为1-100,全部开关朝上(开)的灯进行以下操作:凡是1的倍数反方向拨一次开关;2的倍数 方向又拨一次开关;3的倍数反方向又拨一次开关问:最后为关熄状态的灯的编 是哪些?若实际操作求解会相当繁琐。我们知道,就某个亮着的灯而言,如果拨其开关的次数是奇数次,那么,结果它一定是关着的。根据题意可知,号码为N的灯,拨开关的次数等于N的约数的个数,约数个数是奇数,则N一定是平方数。因为10=100,可知100以内共有10个平方数,即,最后关熄状态的灯共有10盏,编号为1、4、9、16、25、36、49、64、81、100。6. 一个大院子里住了50户人家,每家都养了一条狗。有一天他们接到通知说院子里有狗生病了,并要求所有主人在知道自家狗生病的当天应立即把狗枪杀掉。所有主人和他们的狗都不得离开自家的房子,主人与主人之间也不准进行任何沟通,他们能看到其他49条狗,且能准确判断是否生病,但看不到自家的狗。院中第一天、第二天都没有枪声,第三天传出了一阵枪声,问有多少条病狗被枪杀。这是一道逻辑推理趣题。分析如下:(1) 如果50条狗中只有1条病狗。比如说张家的狗有病,那么,张看到的另49条狗 是正常的,从而判断自家的狗一定病了,张就会把自家的狗枪杀掉,但第1天没有枪声,说明病狗多于1条。(2 如果50条狗中只有2条病狗,比如说王家和李家的狗是病狗,那么,除了王和李以外,其余的人都看到了2条病狗,而王和李只能看到1条病狗和48条正常的狗,已经知道病狗数量多于1,所以王和李可以判断出自家的狗一定是病狗,按照规定应该枪杀,但第2天没有枪声,说明病狗又多于2条。(3) 如果有4条或4条以上病狗,那么每个病狗的主人至少看到了3条病狗,由于病狗数量是不是3条无法确定,故每个人也就不能判断自家的狗是否有病,第3天也就不会有枪声,这与已知矛盾综上可以判定,病狗的数量是3条三只船运货西方传入我国学校里的第一本算术教科书是美国人狄考文编的笔算数学,这本书中有这样一道题:甲、乙、丙三艘船共运货9400箱,甲船比乙船多运300箱,丙船比乙船少运200箱。求三艘船各运多少箱货?这道题如果思路不对的话,就很难抓住解题的关键。事实上,它代表着一类广泛的问题,其共同特点就是有两个或两个以上的未知量。思考时,一般先假设几个未知量相等,或假定要求的一未知量是题里的某一已知量;然后按照题里的已知条件推算。所得结果常与题里对应的已知量不符,再加以调整,即可得到正确的答案。因此,这道题就可以这样来思考:根据已知甲船比乙船多运30O箱,假设甲船同乙船运的一样多,那么甲船就要比原来少运300箱,结果三船运的总箱数就要减少300箱,变成(9400-300)箱。又根据丙船比乙船少运200箱,假设丙船也同乙船运的一样多,那么丙船就要比原来多运200箱,结果三船总箱数就要增加200箱,变成(9400-300+200)箱。经过这样调整,三船运的总箱数为(9400-300+200)。根据假设可知,这正好是乙船所运箱数的3倍,从而可求出动船运的箱数。乙船运的箱数知道了,甲、丙两船运的箱数马上就可得到。巧算和与差一天,小明对一些小朋友说:“请你们随意说出2个数来,我会一下子算出它们的和减去它们的差的结果来!”“真的吗?”小光惊奇地问。“那当然,请出题吧!”小明自信地说。于是,小光写出了两道题:(348+256)-(348256)(7564+3125)-(7564-3125)小光刚写完第2题,小明就立刻说出两题的得数分别是512、6250。大家一起算,得的结果跟小明的一样。小兰想弄明白小明计算的奥秘,又说出下面4组数:47和23,400和278,120与80,16840与3020。结果小明总是很快就说出了答案。这时,小明问小兰:“你找出规律了吗?”“还没找到。不过,我觉得关键在两数中的较小数上。”小兰回答。“对!你再研究一下得数跟较小数的关系就会明白!”“我知道了,得数是较小数的2倍!”小光兴奋地说。小明给大家解释:当我们从两个数的和中减去这两个数的差时,就是从两个数的和中减去了较大数比较小数多的一部分,得到的结果是两个较小数的和,也就是较小数的2倍。”“两数之差”问题鸡兔同笼中的总头数是“两数之和”,如果把条件换成“两数之差”,又应该怎样去解呢?例7 买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?解一:如果拿出40张8分的邮票,余下的邮票中8分与4分的张数就一样多.(680-840)(8+4)=30(张),这就知道,余下的邮票中,8分和4分的各有30张.因此8分邮票有40+30=70(张).答:买了8分的邮票70张,4分的邮票30张.也可以用任意假设一个数的办法.解二:譬如,假设有20张4分,根据条件“8分比4分多40张”,那么应有60张8分.以“分”作为计算单位,此时邮票总值是420+860=560.比680少,因此还要增加邮票.为了保持“差”是40,每增加1张4分,就要增加1张8分,每种要增加的张数是:(680-420-860)(4+8)=10(张).因此4分有20+10=30(张),8分有60+10=70(张).例8 一项工程,如果全是晴天,15天可以完成.倘若下雨,雨天一天工程要多少天才能完成?解:类似于例3,我们设工程的全部工作量是150份,晴天每天完成10份,雨天每天完成8份.用上一例题解一的方法,晴天有(150-83)(10+8)= 7(天).雨天是7+3=10天,总共7+10=17(天).答:这项工程17天完成.请注意,如果把“雨天比晴天多3天”去掉,而换成已知工程是17天完成,由此又回到上一节的问题.差是3,与和是17,知道其一,就能推算出另一个.这说明了例7、例8与上一节基本问题之间的关系.总脚数是“两数之和”,如果把条件换成“两数之差”,又应该怎样去解呢?例9 鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?解一:假如再补上28只鸡脚,也就是再有鸡282=14(只),鸡与兔脚数就相等,兔的脚是鸡的脚42=2(倍),于是鸡的只数是兔的只数的2倍.兔的只数是:(100+282)(2+1)=38(只).鸡是:100-38=62(只).答:鸡62只,兔38只.当然也可以去掉兔284=7(只).兔的只数是(100-284)(2+1)+7=38(只).也可以用任意假设一个数的办法.解二:假设有50只鸡,就有兔100-50=50(只).此时脚数之差是:450-250=100,比28多了72.就说明假设的兔数多了(鸡数少了).为了保持总数是100,一只兔换成一只鸡,少了4只兔脚,多了2只鸡脚,相差为6只(千万注意,不是2).因此要减少的兔数是:(100-28)(4+2)=12(只).兔只数是:50-12=38(只).另外,还存在下面这样的问题:总头数换成“两数之差”,总脚数也换成“两数之差”.例10 古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一诗选集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首.解一:如果去掉13首五言绝句,两种诗首数就相等,此时字数相差1354+20=280(字).每首字数相差:74-54=8(字).因此,七言绝句有:28(28-20)=35(首).五言绝句有:35+13=48(首).答:五言绝句48首,七言绝句35首.解二:假设五言绝句是23首,那么根据相差13首,七言绝句是10首.字数分别是2023=460(字),2810=280(字),五言绝句的字数,反而多了:460-280=180(字).与题目中“少20字”相差:180+20=200(字).说明假设诗的首数少了.为了保持相差13首,增加一首五言绝句,也要增一首七言绝句,而字数相差增加8.因此五言绝句的首数要比假设增加2008=25(首).五言绝句有23+25=48(首).七言绝句有10+25=35(首).在写出“鸡兔同笼”公式的时候,我们假设都是兔,或者都是鸡,对于例7、例9和例10三个问题,当然也可以这样假设.现在来具体做一下,把列出的计算式子与“鸡兔同笼”公式对照一下,就会发现非常有趣的事.例7,假设都是8分邮票,4分邮票张数是(680-840)(8+4)=30(张).例9,假设都是兔,鸡的只数是(1004-28)(4+2)=62(只).例10,假设都是五言绝句,七言绝句的首数是(2013+20)(28-20)=35(首).首先,请读者先弄明白上面三个算式的由来,然后与“鸡兔同笼”公式比较,这三个算式只是有一处“-”成了“+”.其奥妙何在呢?当你进入初中,有了负数的概念,并会列二元一次方程组,就会明白,从数学上说,这一讲前两节列举的所有例子都是同一件事.例11有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只?解:如果没有破损,运费应是400元.但破损一只要减少1+0.2=1.2(元).因此破损只数是(400-379.6)(1+0.2)=17(只).答:这次搬运中破损了17只玻璃瓶.请你想一想,这是“鸡兔同笼”同一类型的问题吗?例12 有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第二次15道题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分?解一:如果小明第一次测验24题全对,得524=120(分).那么第二次只做对30-24=6(题)得分是:86-2(15-6)=30(分). 两次相差:120-30=90(分).比题目中条件相差10分,多了80分.说明假设的第一次答对题数多了,要减少.第一次答对减少一题,少得5+1=6(分),而第二次答对增加一题不但不倒扣2分,还可得8分,因此增加8+2=10分.两者两差数就可减少6+10=16(分).(90-10)(6+10)=5(题).因此,第一次答对题数要比假设(全对)减少5题,也就是第一次答对19题,第二次答对:30-19=11(题).第一次得分:519-1(24- 9)=90.第二次得分:811-2(15-11)=80.答:第一次得90分,第二次得80分.解二:答对30题,也就是两次共答错24+15-30=9(题).第一次答错一题,要从满分中扣去5+1=6(分),第二次答错一题,要从满分中扣去8+2=10(分).答错题互换一下,两次得分要相差6+10=16(分).如果答错9题都是第一次,要从满分中扣去69.但两次满分都是120分.比题目中条件“第一次得分多10分”,要少了69+10.因此,第二次答错题数是:(69+10)(6+10)=4(题)第一次答错 9-4=5(题).第一次得分 5(24-5)-15=90(分).第二次得分 8(15-4)-24=80(分).鸡兔同笼问题“鸡兔同笼”是一类有名的中国古算题.最早出现在孙子算经中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法-“假设法”来求解.因此很有必要学会它的解法和思路.例1 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,也就是2442=122(只).在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数122-88=34,有34只兔子.当然鸡就有54只.答:有兔子34只,鸡54只.上面的计算,可以归结为下面算式:总脚数2-总头数=兔子数.上面的解法是孙子算经中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,“脚数”就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法.还说例1.如果设想88只都是兔子,那么就有488只脚,比244只脚多了884-244=108(只).每只鸡比兔子少(4-2)只脚,所以共有鸡(884-244)(4-2)= 54(只).说明我们设想的88只“兔子”中,有54只不是兔子.而是鸡.因此可以列出公式:鸡数=(兔脚数总头数-总脚数)(兔脚数-鸡脚数)当然,我们也可以设想88只都是“鸡”,那么共有脚288=176(只),比244只脚少了244-176=68(只).每只鸡比每只兔子少(4-2)只脚,682=34(只).说明设想中的“鸡”,有34只是兔子,也可以列出公式:兔数=(总脚数-鸡脚数总头数)(兔脚数-鸡脚数).上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为“假设法”.现在,拿一个具体问题来试试上面的公式.例2 红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红、蓝铅笔各买几支?解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚.现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有:蓝笔数=(1916-280)(19-11)=248=3(支).红笔数=16-3=13(支).答:买了13支红铅笔和3支蓝铅笔.对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的“脚数”19与11之和是30.我们也可以设想16只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚数是8(11+19)=240.比280少40.40(19-11)=5.就知道设想中的8只“鸡”应少5只,也就是“鸡”(蓝铅笔)数是3.308比191
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跨文化管理视域下婚礼策划团队协作模式创新-洞察阐释
- 重庆绿氢生产线项目可行性研究报告(参考模板)
- 乡村振兴与水稻产业升级的互动分析
- 2025至2030年中国甘草霜行业投资前景及策略咨询报告
- 2025至2030年中国烟管式燃油蒸汽锅炉行业投资前景及策略咨询报告
- 2025至2030年中国火灾逃生披行业投资前景及策略咨询报告
- 2025至2030年中国注射用米力农行业投资前景及策略咨询报告
- 2025至2030年中国水面旋转盘行业投资前景及策略咨询报告
- 2025至2030年中国气门弹簧压缩器行业投资前景及策略咨询报告
- 2025至2030年中国木纹器行业投资前景及策略咨询报告
- CJ/T 43-2005 水处理用滤料
- 《财务管理学(第10版)》课件 第9、10章 短期资产管理、短期筹资管理
- 天津市2024年中考英语真题【附真题答案】
- 平凡的世界(阅读任务三 品味小说语言)教学设计-【中职专用】高一语文(高教版2023基础模块上册)
- 2024年辽宁省中考化学试卷(含答案)
- (完整版)工匠精神课件
- 国开(浙江)2024年《领导科学与艺术》形成性考核作业1-4答案
- 零售药店药品验收知识培训试题
- 江苏省南京市栖霞区2023-2024学年四年级下学期期末检测语文试卷
- 女方净身出户离婚协议书的范文
- 产品生产保密协议代加工保密协议
评论
0/150
提交评论