




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中点四边形”的教学设计教学目标:1激发学生的学习兴趣,培养学生勇于探索、勇于创新的精神。2培养学生独立分析问题、解决问题的能力以及研究能力和创新意识。3理解中点四边形的概念,掌握中点四边形判定、证明及应用。教学重点:中点四边形形状判定和证明教学难点:对确定中点四边形形状的主要因素的分析和概括教学方法:自主合作式教学教学手段:电脑、多媒体课件教学过程阶段一:学生活动引入、基本概念活动要求:学生以小组形式对问题一一进行探讨,发言老师指导:教师指导小结设计意图:因学生对平行四边形一章学得较好,问题1起点较高,重在培养学生的逆向思维,提高学生的学习兴趣。复习:(四边形的知识)研究问题1:如图,在四边形ABCD中,E、F分别为AB、BC边上的中点,你能否分别在CD、DA边上找到点G、H,使四边形EFGH为平行四边形?说明理由。(或如图ABCD为一个四边形纸片,E、F分别为AB、BC的边上的中点,以EF为边能否折叠出一个平行四边形EFGH,使顶点G、H分别在CD、DA边上?若能,说明理由)阶段二:学生活动基础问题研究活动要求:完成对问题一研究发现、证明的过程,老师指导:指导部分学生研究问题设计意图:通过电脑的动画效果,给学生创造一个发现问题、解决问题的情境。 目的在于激发学生的学习兴趣,培养学生“观察、发现、猜想、证明”问题的数学思想和能力。活动流程:中点四边形的定义:如图,四边形ABCD的各边的中点,所构成的四边形EFGH叫做四边形ABCD的中四边形。研究:利用课件变换四边形ABCD形状1、发现:无论四边形ABCD的形状怎么变化,中点四边形EFGH的形状始终为平行四边形。2、证明: (证法一)连接ACE、F分别为AB、BC的中点 EFAC,EF=1/2AC 同理HGAC,HG=1/2AC EFHG 且EF=HG四边形EFGH为平行四边形 (证法一)连接AC、BDE、F分别为AB、BC的中点 EFAC 同理HGAC EFHG 同理FGHE四边形EFGH为平行四边形归纳:任意一个四边形的中点四边形,都为平行四边形 阶段三:学生活动问题的研究和概括活动要求:用“一般特殊一般” 的方法发现和研究问题,概括出确定中点四边形ABCD形状的主要因素。老师指导:引导学生发现问题、提出问题并指导学习能力较弱的学生研究问题。 设计意图:利用电脑的大容量使学生能够在较短的时间内对问题进行多方面地研究。培养学生“从一般到特殊再到一般”的研究问题的方法和概括能力。研究问题2:特殊四边形的中点四边形的形状 活动流程:1、发现问题(特殊四边形):在上一阶段研究的基础上,利用课件变换四边形ABCD形状,使四边形ABCD分别为平行四边形、矩形、菱形、正方形和等腰梯形,研究中点四边形EFGH形状。发现:中点四边形的形状有矩形、菱形和正方形问题:决定中点四边形EFGH的形状的主要因素是四边形ABCD的边?角?对角线?2、研究问题(一般四边形):反之若中点四边形EFGH分别为矩形、菱形和正方形,则四边形ABCD是否一定分别为菱形、矩形(等腰梯形)、正方形?3、概括规律:决定中点四边形EFGH的形状的主要因素是四边形ABCD的对角线的长度和位置。(1) 若对角线AC=BD,则四边形EFGH为菱形; (2) 若对角线ACBD,则四边形EFGH为矩形;(3) 若对角线AC=BD,ACBD,则四边形EFGH为正方形。用“一般特殊一般” 的方法发现和研究问题,概括出确定中点四边形ABCD形状的主要因素。 引导学生发现问题、提出问题并指导学习能力较弱的学生研究问题。阶段四:学生活动发散和创新活动要求:利用电脑 1、拖动A点使四边形ABCD的图形变化进行研究。 2、变化E、F、G、H点的条件进行研究。老师指导:老师引导设计意图:培养学生的发散思维能力,提高学生研究数学的兴趣和创新意识。 1、图形发散“实验”:利用计算机对图形进行变换“实验”实验二A经过以上实验,当ABCD是上面的图形时四边形EFGH仍为平行四边形。特别是“实验三” ,四边形EFGH可以看作四边形ADBC的边AD、BC的中点和对角线AB、CD的中点的四边形,这样就引出了新的问题。2、条件发散:阶段五:学生活动简单应用 活动要求:学生分析 老师指导:老师精点设计意图:培养学生对新知识灵活的应用的能力。应用1:如图,梯形ABCD中,ABCD,M是AD中点,N是BC中点,E是CD中点,F是AB中点。(1) 若EF=MN,则BDME; (2) 若AC=BD,则EF=MN; (3) 若ACBD,则EF=MN。(只分析方法,应用电脑变换图形,使一题多变,进行变式应用)应用2:如图(1)(2)(3),最外面的矩形、菱形、正方形的面积为1,则最里面的中点四边形的面积。(探索解题法,展示数学的图形美)阶段六:小结 活动要求:思考、归纳 老师指导:教师引导CBD图(1)图(3)设计意图:培养学生的归纳能力,使学生形成完整的知识结构和研究数学问题的一般方法。1、本节课应用了哪些数学方法?2、决定中点四边形EFGH的形状的主要因素是四边形ABCD的对角线的长度和位置3、学习中应具备积极探索、勇于创新的品质。 阶段七:教师活动作业设计意图:促使培养研究学习型的学生 对所研究的问题进行进一步研究和归纳 教学反思:1、本节课的指导思想是充分发挥学生在学习中的主体作用。从“问题提出探讨归纳应用发散和进一步研究”的过程中,同学们主动参与、积极探索,并对难的问题同学们合作研究,整个课堂学习积极性高,研究风气浓。2、老师充分发挥在学习中的主导作用。对学习能力弱的学生积极地加以指导,并帮助学生分析问题,概括归纳新知识。3、本节课的突出特点是利用现代技术,为学生创建一个学习、研究的学习情境。通过图形的变换,使学生很
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美美少年计划面试题及答案
- 肺炎治疗与康复
- 幼儿园运动会方案培训
- 2025年中国女式牛仔裤行业市场全景分析及前景机遇研判报告
- 4S店执行力培训
- 低血钾症状外科护理学
- 教育培训班教师工作总结
- CNAS认证实施流程
- 财务会计人员劳动合同续签与终止范本
- 电信礼仪培训
- 2024-2025学年广东省新部编版七年级历史第二学期期末模拟卷(含答案)
- 2025年高考湖南卷物理真题(解析版)
- 2024-2025学年人教版一年级下数学期末试卷(含答案)
- 2025山西万家寨水务控股集团所属企业校园招聘82人笔试参考题库附带答案详解
- 牙科手术安全核查流程与标准
- 【MOOC】《中国哲学》(北京师范大学) 章节作业中国大学慕课答案
- 中国当代文学专题-003-国开机考复习资料
- 工程塑料 第六章聚甲醛
- YY_T 0681.2-2010无菌医疗器械包装试验方法 第2部分:软性屏障材料的密封强度
- 粘土密封墙专项施工方案
- 化验单申请单模板
评论
0/150
提交评论