数学人教版九年级上册21.1一元二次方程.doc_第1页
数学人教版九年级上册21.1一元二次方程.doc_第2页
数学人教版九年级上册21.1一元二次方程.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课题21.1.1 一元二次方程课型新授教学媒体多媒体教学目标知识技能1. 理解一元二次方程概念是以未知数的个数和次数为标准的.2. 掌握一元二次方程的一般形式以及三种特殊形式,能将一个一元二次方程化为一般形式3. 理解二次根式的根的概念,会判断一个数是否是一个一元二次方程的根过程方法1. 通过根据实际问题列方程,向学生渗透知识来源于生活.2. 通过观察,思考,交流,获得一元二次方程的概念及其一般形式和其它三种特殊形式.3. 经历观察,归纳一元二次方程的概念,一元二次方程的根的概念,情感态度通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情教学重点一元二次方程的概念,一般形式和一元二次方程的根的概念教学难点通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念教学过程设计教学程序及教学内容师生行为设计意图一、复习引入导语:小学五年级学习过简易方程,上初中后学习了一元一次方程,二元一次方程组,可化为一元一次方程的分式方程,运用方程方法可以解决众多代数问题和几何求值问题,是非常常见的一种数学方法。从这节课开始学习一元二次方程知识.先来学习一元二次方程的有关概念.二、探究新知l 探究问题问题1 如图,有一块矩形铁皮,长100 cm,宽50 cm在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形? 问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛?问题3一块四周镶有宽度相等的花边的地毯如下图,它的长为m,宽为m如果地毯中央长方形图案的面积为m2 ,则花边多宽?问题4如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?整理所列方程后观察:上述四个方程有什么共同特点?与我们以前学过的一元一次方程和分式方程有什么区别?1、上面四个方程整理后含有 _未知数,它们的最高次数是 _ ,等号两边是 _ 式。2、和以前所学的方程比较它们叫什么方程? 请定义。只含一个未知数;未知数的最高次数是2.都是整式方程;l 概念归纳:1.一元二次方程定义:分析:首先它是整式方程,然后未知数的个数是1,最高次数是2.例1:下列方程中哪些是一元二次方程?试说明理由2.一元二次方程的一般形式:分析:.为什么规定0?.方程左边各项之间的运算关系是什么?关于x的一元二次方程的各项分别是什么?各项系数是什么?例2 将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数:3.特殊形式:;l 课本例题分析:类比一元一次方程的去括号,移项,合并同类项,进行同解变形,化为一般形式后再写出各项系数,注意方程一般形式中的“-”是性质符号负号,不是运算符号减号.l三、课堂训练1、抢答:2、将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:3、 关于x的方程ax2 -2bxa2x2 , 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?4、已知关于x的一元二次方程(m1)x23x5m40有一根为2,求m。一元二次方程的根的概念5、已知关于x的方程是一元二次方程,求m的值。四、小结归纳1.一元二次方程的概念及其一般形式,能将一个一元二次方程化为一般形式,并正确指出其各项系数.2.一元二次方程的根的概念,能判断一个数是否是一个一元二次方程的根.五、作业设计复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中上等学生必做;学有余力的学生,要求模仿编拟课堂上出现的一些补充题目进行重复练习.点题,板书课题.学生读题找等量关系列方程.学生观察所列方程整理后的特点,把握方程结构,初步感知一元二次方程概念.学生尝试叙述,然后师生归纳师生分析概念和一般形式.学生根据相关概念作答,复习巩固.学生类比一元一次方程的解尝试叙述学生思考,讨论完成,学生独立完成,教师巡视指导,了解学生掌握情况,并集中订正师生归纳总结,学生作笔记.联系曾经学习过的方程知识衔接本章,明确本节课内容淡化列方程难度,重点突出方程特点 通过比较,对一元二次方程的概念达到共识,从而为掌握概念作准备.全面理解和掌握识记、理解相关概念通过类比,迁移提高

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论