北师大版九年级上册数学复习分解.doc_第1页
北师大版九年级上册数学复习分解.doc_第2页
北师大版九年级上册数学复习分解.doc_第3页
北师大版九年级上册数学复习分解.doc_第4页
北师大版九年级上册数学复习分解.doc_第5页
免费预览已结束,剩余11页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

青白江区龙王学校9年级上期期末复习资料 适用:9.1和9.4班数学九年级上册知识点总结第一章 特殊的平行四边形复习知识点归纳矩形菱形正方形性质边对边平行且相等对边平行,四边相等对边平行,四边相等角四个角都是直角对角相等四个角都是直角对角线互相平分且相等互相垂直平分,且每条对角线平分一组对角互相垂直平分且相等,每条对角线平分一组对角判定有三个角是直角;是平行四边形且有一个角是直角;是平行四边形且两条对角线相等.四边相等的四边形;是平行四边形且有一组邻边相等;是平行四边形且两条对角线互相垂直。是矩形,且有一组邻边相等;是菱形,且有一个角是直角。对称性既是轴对称图形,又是中心对称图形一矩形例1:若矩形的对角线长为8cm,两条对角线的一个交角为600,则该矩形的面积为 例2:菱形具有而矩形不具有的性质是 ( )A 对角线互相平分; B.四条边都相等; C.对角相等; D.邻角互补二菱形例1 已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E求证:AFD=CBE 例2已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形例3、如图,在 ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AD、BC分别交于E、F,求证:四边形AFCE是菱形.例4、已知如图,菱形ABCD中,E是BC上一点,AE 、BD交于M,若AB=AE,EAD=2BAE。求证:AM=BE。 例5如图,在菱形ABCD中,A=60,=4,O为对角线BD的中点,过O点作OEAB,垂足为E求线段的长例6如图,四边形ABCD是菱形,DEAB交BA的延长线于E,DFBC,交BC的延长线于F。请你猜想DE与DF的大小有什么关系?并证明你的猜想。例7、如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.(1)求证:BDEBCF; (2)判断BEF的形状,并说明理由;(3)设BEF的面积为S,求S的取值范围.三正方形要确定一个四边形是正方形,应先确定它是菱形或是矩形,然后再加上相应的条件,确定是正方形. 例1 已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DGAE于G,DG交OA于F求证:OE=OF例2 已知:如图,四边形ABCD是正方形,分别过点A、C两点作l1l2,作BMl1于M,DNl1于N,直线MB、DN分别交l2于Q、P点求证:四边形PQMN是正方形实战演练:1.对角线互相垂直平分的四边形是( )A平行四边形、菱形B矩形、菱形C矩形、正方形D菱形、正方形2.顺次连接菱形各边中点所得的四边形一定是( )A.等腰梯形B.正方形C.平行四边形D.矩形BA1DC2112BADCBAC12D12BADC3.已知为矩形的对角线,则图中与一定不相等的是( )A B C D4.如右图,在中,点分别在边,上,且,下列四个判断中,不正确的是()A四边形是平行四边形B如果,那么四边形是矩形C如果平分,那么四边形是菱形D如果且,那么四边形是菱形5.如下左图,四边形为矩形纸片把纸片折叠,使点恰好落在边的中点处,折痕为若,则等于()ABCDEAB CD6.如上中图,矩形的周长为,两条对角线相交于点,过点作的垂线,分别交于点,连结,则的周长为( )A5cmB8cmC9cmD10cm7.如上右图:矩形纸片ABCD,AB=2,点E在BC上,且AE=EC若将纸片沿AE折叠,点B恰好落在AC上,则AC的长是8.边长为5cm的菱形,一条对角线长是6cm,则另一条对角线的长是 .BCDAP9.如下左图所示,菱形中,对角线相交于点,若再补充一个条件能使菱形成为正方形,则这个条件是 (只填一个条件即可)ADCBO10.如上右图,已知P是正方形ABCD对角线BD上一点,且BP = BC,则ACP度数是 11.如图,矩形中,是与的交点,过点的直线与的延长线分别交于(1)求证:;(2)当与满足什么关系时,以为顶点的四边形是菱形?证明你的结论FDOCBEA第二章 一元二次方程复习一、一元二次方程 (一)一元二次方程定义:含有一个未知数,并且未知数的项的最高次数是2,系数不为0的整式方程叫做一元二次方程。(二)一元二次方程的一般形式:,它的特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。例 方程是一元二次方程,则.二、一元二次方程的解法 1、直接开平方法:直接开平方法适用于解形如的一元二次方程。当时,;当b0时,方程没有实数根。例 第二象限内一点A(x1,x22),关于x轴的对称点为B,且AB=6,则x=_2、配方法 一般步骤:(1) 方程两边同时除以a,将二次项系数化为1.(2) 将所得方程的常数项移到方程的右边。(3) 所得方程的两边都加上一次项系数一半的平方(4) 配方,化成(5)开方,当时,;当b0时,方程没有实数根。例 若方程有解,则的取值范围是()ABC D无法确定3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。一元二次方程的求根公式:例 已知x24x2=0,那么3x212x2012的值为 4、因式分解法一元二次方程的一边为0,另一边易于分解成两个一次因式的乘积时使用此方法。例 已知一个三角形的两边长是方程x2-8x+15=0的两根,则第三边y的取值范围是( ) Ay8 B3y5 c2y0k0时,函数图象的两个分支分别在第一、三象限。在每个象限内,y随x 的增大而减小。x的取值范围是x0, y的取值范围是y0;当k0时,函数图象的两个分支分别在第二、四象限。在每个象限内,y随x 的增大而增大。例 在同一坐标系中,函数和的图像大致是 ( )A B C D例 反比例函数,当时,其图象的两个分支在第一、三象限内。例 反比例函数的对称轴有( )条(A)0 (B)1 (C)2 (D) 无数例 对于反比例函数(),下列说法不正确的是( )(A)它的图象分布在第一、三象限 (B)点(,)在它的图象上(C)它的图象是中心对称图形 (D)随的增大而增大例 已知反比例函数(k0)的图象上有两点A(),B(),且,则的值是()(A)正数(B)负数(C)非正数(D)不能确定4、反比例函数解析式的确定确定反比例函数解析式的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。5、反比例函数中反比例

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论