数学人教版八年级下册17.1勾股定理.doc_第1页
数学人教版八年级下册17.1勾股定理.doc_第2页
数学人教版八年级下册17.1勾股定理.doc_第3页
数学人教版八年级下册17.1勾股定理.doc_第4页
数学人教版八年级下册17.1勾股定理.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

171 勾股定理(一)教学目标:知识与技能:1、了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。2、培养在实际生活中发现问题总结规律的意识和能力。3、能利用已知两边求直角三角形另一边的长。过程与方法:1、通过拼图活动,体验数学思维的严谨性,发展形象思维。2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。情感态度与价值观:1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培养合作意识和探索精神。教学重点:勾股定理的内容及证明。教学难点:勾股定理的证明教学方法:讲练结合;讨论探究法。教具准备:多媒体课件。教学时数:一课时教学过程:一、创设情境,导入新课问题:请同学们认真观察课本封面和本章章前彩图,说一说封面和章前彩图中的图形表示什么意思?它们之间有联系吗?封面是我国公元3世纪汉代的赵爽在注解周髀算经时给出的“弦图”,章前彩图是2002年世界数学家大会的会徽,大会的会徽使用的主体图案就是赵爽“弦图”。(1) 你见过这个图案吗?(2) 你知道为什么把这个图案作为这次大会的会徽吗?本节我们一起来解读图中的奥秘。板书课题二、实验操作,探究新知【新知探究】毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系。(1)同学们,请你也来观察下图中的地面,看看能发现些什么?地面 图18.1-1(2)你能找出图18.1-1中正方形A、B、C面积之间的关系吗?(3)图中正方形A、B、C所围等腰直角三角形三边之间有什么特殊关系?【深入探究交流归纳】(1)等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也具有“两直角边的平方和等于斜边的平方”呢?ABC图18.1-2如图18.1-2,每个小方格的面积均为1,以格点为顶点,有一个直角边分别是3、4的直角三角形。仿照上一活动,我们以这个直角三角形的三边为边长向外作正方形。(2)想一想,怎样利用小方格计算正方形A、B、C面积?(多媒体展示割补法)【拼图验证加深理解】猜想:直角三角形两直角边的平方和等于斜边的平方。(多媒体动画演示验证)(1)让学生利用学具进行拼图(2)多媒体课件展示拼图过程及证明过程,理解数学的严密性。(3)右边这些图形也能证明这个结论吗?三、得出结论,拓展运用我们证明了以上结论的正确性,我们就可称之为定理,这就是著名的“勾股定理”。问题:请同学们用不同的表达方式(文字语言,符号语言)表述这一定理。史话勾股定理:在中国古代大约是战国时期西汉的数学著作周髀算经中记录着商高同周公的一段对话。商高说:“故折矩,勾广三,股修四,径隅五。”即:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。故称之为“勾股定理”或“商高定理” 在西方,希腊数学家欧几里德(Euclid,公元前三百年左右)在编著几何原本时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为“毕达哥拉斯定理”,以后就流传开了。毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年。相传,毕达哥拉斯学派找到了勾股定理的证明后,欣喜若狂,杀了一百头牛祭神,由此,又有“百牛定理”之称。【小试身手】1如图,直角ABC的主要性质是:C=90,(用几何语言表示) 两锐角之间的关系: ; 若B=30,则B的对边和斜边: ; 三边之间的关系: 。2在RtABC,C=90已知a=b=5,求c。已知a=1,c=2, 求b。已知c=17,b=8, 求a。已知a:b=1:2,c=5, 求a。已知b=15,A=30,求a,c。【强化提高】一根竹子高5米,折断后竹子顶端落在离竹子底端2米处,问折断处离地面的高度是多少?四、回顾小结,整体感知1、通过本节课的学习你都有哪些收获?2、你对本节课内容都有哪些认识?五、布置作业,巩固加深1、必做题:习题18.1 第1, 7题。2、选做题:(1)、小明爸爸更换了一个19英寸(48厘米)的电脑液晶显示屏,小明量了显示屏后,发现只有41厘米长25厘米宽,他认为售货员搞错了,他的看法对不对?

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论