


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第六章 平行四边形. 平行四边形的判定(2)教学目标知识技能目标1会证明对角线互相平分的四边形是平行四边形这一判定定理2理解对角线互相平分的四边形是平行四边形这一判定定理,并学会简单运用过程与方法目标1经历平行四边行判别条件的探索过程,在探究活动中发展学生的合情推理意识2在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的几何表达能力教学重点:平行四边形判定方法的探究、运用教学难点:对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用教学过程设计教学环节本节可分成五个环节:第一环节:复习引入第二环节:定理探究第三环节:巩固练习第四环节:回顾小结第五环节:布置作业第一环节复习引入:问题1(多媒体展示问题)1平行四边形的定义是什么?它有什么作用?2判定四边形是平行四边形的方法有哪些?(1)两组对边分别平行的四边形是平行四边形.(2)一组对边平行且相等的四边形是平行四边形.(3)两组对边分别相等的四边形是平行四边形.第二环节探索活动活动: 大家知道:平行四边形的对角线互相平分.你能写出它的逆命题吗?思考2.你能说明你得到的四边形是平行四边形吗?思考2.能用文字语言表达吗? (得出:对角线互相平分的四边形是平行四边形.)已知:如图6-12,四边形ABCD的对角线AC、BD相交于点O,并且OA=OC,OB=OD.求证:四边形ABCD是平行四边形.证明: OA=OC,OB=OD 且AOB=COD AOBCOD AB=CD 同理可得:BC=AD 四边形ABCD是平行四边形.得出平行四边形的判定定理:对角线互相平分的四边形是平行四边形 第三环节巩固练习例1 已知:如图6-13(1),在平行四边形ABCD 中,点E、F在对角线AC上,并且AE=CF求证:四边形BFDE是平行四边形吗?证明: 如图6-13(2),连接BD. 四边形ABCD是平行四边形 OA=OC OB=OD 又AE=CF OA-AE=OC-CF OE=OF 四边形BFDE是平行四边形变式练习: 对于上述例题,若E,F继续移动至OA,OC的延长线上,仍使AE=CF(如图),则结论还成立吗? 随堂练习1判断下列说法是否正确(1)一组对边平行且另一组对边相等的四边形是平行四边形 ( )(2)两组对角都相等的四边形是平行四边形 ( )(3)一组对边平行且一组对角相等的四边形是平行四边形 ( )(4)一组对边平行,一组邻角互补的四边形是平行四边形 ( )2如图:AD是ABC的边BC边上的中线.(1)画图:延长AD到点E,使DE=AD,连接BE,CE;(2)判断四边形ABEC的形状,并说明理由.3想一想:如图有一块平行四边形玻璃镜片,不小心打掉了一块,但是有两条边是完好的.同学们想想看,有没有办法把原来的平行四边形重新画出来?(让学生思考讨论,再各自画图,画好后互相交流画法,教师巡回检查对个别学生稍加点拨,最后请学生回答画图方法)学生想到的画法有:(1)分别过A,C作BC,BA的平行线,两平行线相交于D; (2)分别以A,C为圆心,以BC, BA的长为半径画弧,两弧相交于D,连接AD,CD; (3)这一种方法学生不易想到,即为平行四边形对角线的特性,引导学生得出连线AC,取AC的中点O,再连接BO,并延长BO到D,使BO=DO,连接AD,CD第四环节回顾小结:师生共同小结,主要围绕下列几个问题:(1)判定一个四边形是平行四边形的方法有哪几种? (2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酶制剂充填封装工工艺考核试卷及答案
- 发电集控值班员5S管理考核试卷及答案
- 2025至2030中国移动射线照相系统行业产业运行态势及投资规划深度研究报告
- 2025至2030中国汽车加热和通风座椅行业项目调研及市场前景预测评估报告
- 会计证自考试题及答案
- 工程质量管理施工措施
- 珠宝店钻石营销方案策划
- 一生所爱的营销方案
- 7权力受到制约和监督 课时2《权力运行受监督》教学设计 2024-2025学年道德与法治六年级上册统编版
- 高考数学函数专题训练试题
- 一粒种子旅行
- GB/T 9124-2010钢制管法兰技术条件
- GB 4287-1992纺织染整工业水污染物排放标准
- 10室外配电线路工程定额套用及项目设置
- 腰椎间盘突出症课件
- 桂阳县中小幼教师资格定期注册工作指南专家讲座
- 童装原型部分(课堂)课件
- 软件测试用例实例非常详细
- 广联达算量模型与revit土建三维设计建模交互
- 急救中心急救站点建设标准
- 2022年江苏省苏豪控股集团有限公司招聘笔试题库及答案解析
评论
0/150
提交评论