




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
求展开式系数的六种常见类型求展开式中的系数是高考常考题型之一,本文以高考题为例,对二项式定理试题中求展开式系数的问题加以归类与解析,供读者参考。一 、型例1的展开式中项的系数是( )(A)840 (B)840 (C)210 (D)210解析:在通项公式中令=4,即得的展开式中项的系数为=840,故选A。 例2展开式中的系数为 。解析:通项公式 ,由题意得,则,故所求的系数为。评注:常用二项展开式的通项公式求二项展开式中某特定项的系数,由待定系数法确定的值。二 、型例3的展开式中整理后的常数项等于 .解析;的通项公式为,令,则,这时得的展开式中的常数项为=32, 的通项公式为,令,则,这时得的展开式中的常数项为=70,故的展开式中常数项等于。例4在的展开式中,含的项的系数是( )(A) (B) 5 (C) (D) 10解析:中的系数, 中的系数为,故的展开式中的系数为,故选D 。评注:求型如的展开式中某一项的系数,可分别展开两个二项式,由多项式加减法求得所求项的系数。三 、型例5的展开式中项的系数是 。解析:的展开式中、的系数分别为和,故的展开式中项的系数为+=1008。例6的展开式中的系数是( ) (A ) (B ) (C ) (D) 略解:的展开式中、的系数分别为和,故 展开式中的系数为,故选B。评注:求型如的展开式中某一项的系数,可分别展开两个二项式,由多项式乘法求得所求项的系数。四 、型例7的展开式中整理后的常数项为 .解法一:=,通项公式, 的通项公式为,令,则,可得或或。当时,得展开式中项为;当时,,得展开式中项为;当时,得展开式中项为。综上,的展开式中整理后的常数项为。解法二:=,对于二项式中,要得到常数项需,即。所以,常数项为。解法三:是5个三项式相乘。常数项的产生有三种情况:在5个相乘的三项式中,从其中一个取,从另外4个三项式中选一个取,从剩余的3个三项式中取常数项相乘,可得;从其中两个取,从另外3个三项式中选两个取,从剩余的1个三项式中取常数项相乘,可得;从5个相乘的三项式中取常数项相乘,可得=。综上,的展开式中整理后的常数项为。评注:解法一、解法二的共同特点是:利用转化思想,把三项式转化为二项式来解决。解法三是利用二项式定理的推导方法来解决问题,本质上是利用加法原理和乘法原理,这种方法可以直接求展开式中的某特定项。五 、 型例8在的展开式中,项的系数是。(用数字作答)解析:由题意得项的系数为。例9在(1x)5(1x)6(1x)7(1x)8的展开式中,含x3的项的系数是( )(A) 74 (B) 121 (C) 74 (D) 121解析:(1x)5(1x)6(1x)7(1x)8=中的系数为,中的系数为,126+5= 121,故选D。评注:例8的解法是先求出各展开式中项的系数,然后再相加;例9则从整体出发,把原式看作首相为(1x),公比为(1x)的等比数列的前4项和,用等比数列求和公式减少项数,简化了运算。例8和例9的解答方法是求的展开式中某特定项系数的两种常规方法。六 、求展开式中若干项系数的和或差例10若,则。(用数字作答)解析:在中,令,则,令,则故=2003+。例11,则的值为( )(A) 1 (B) 1 (C) 0 (D) 2解析:在中,令,可得,令,可得所以,=1,故选A。评注:求展开式中若干项系数的和或差常采用“赋值法”。赋值法是给代数式(或方程或函数表达式)中的某些字母赋予一定的特殊值,从而达到便于解决问题的目的,它普遍适用于恒
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年河北廊坊市农林科学院公开选聘博士研究生1名考前自测高频考点模拟试题及一套答案详解
- 2025广东茂名市电白区公益性岗位招聘2人(第一批)考前自测高频考点模拟试题及答案详解(名师系列)
- 2025江苏宿迁豫智文化产业发展有限公司招聘工作人员拟聘模拟试卷及一套答案详解
- 2025年陕西地矿综合地质大队有限公司招聘(19人)模拟试卷及答案详解(典优)
- 2025年上半年四川泸州市龙马潭区人民医院、泸州市龙马潭区第二人民医院、中医院考核招聘23人考前自测高频考点模拟试题完整答案详解
- 2025湖州吴兴宝易矿业有限公司招聘2人考前自测高频考点模拟试题及答案详解参考
- 2025春季四川内江市东兴区人力资源和社会保障局内江市东兴区教育和体育局东兴区公办学校选调教师198人模拟试卷及1套参考答案详解
- 2025江苏泰兴市人民医院招聘高层次人才(第1批)12人考前自测高频考点模拟试题及一套参考答案详解
- 2025甘肃省公开招募高校银龄教师考前自测高频考点模拟试题及答案详解(全优)
- 2025年三环集团校园大使招聘考前自测高频考点模拟试题及答案详解(夺冠)
- 2024北森图形推理题
- 霍尼韦尔CP-BAS系统方案实用文档
- SC/T 5017-1997丙纶裂膜夹钢丝绳
- GB/T 4985-2021石油蜡针入度测定法
- GB/T 19638.1-2014固定型阀控式铅酸蓄电池第1部分:技术条件
- GB/T 14327-2009苯中噻吩含量的测定方法
- 松下panasonic-视觉说明书pv200培训
- 先天性甲状腺功能减低症ppt
- 植物生理学(全套PPT课件)
- 外科学题库水电解质代谢和酸碱平衡失调
- 抗精神病药物的副作用及处理
评论
0/150
提交评论