




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考复习 探索问题研究 一 引言 上课时学习了探索型问题 一 即条件探索与结论探索 解决这类问题常用的方法是 1 特殊值代入法 2 反演推理法 3 类讨论法 4 类比猜想法 本课时学习存在型探索与规律型探索 二 学习目标掌握存在型探索与规律型探索问题的解题方法与策略 三 例题剖析 例1如图已知直线MN与以AB为直径的半圆相切于点C A 28 1 求 ACM的度数 2 在MN上是否存在一点D 使AB CD AC BC 为什么 A B M C N 解 1 AB是直径 ACB 90 又 A 28 B 62 又MN是切线 ACM 62 2 分析 先假设存在这样的点D 从这个假设出发 进行推理 若能得出结论 假设正确 反之 不存在 证明 过点A作AD MN于D D MN是切线 B ACD Rt ABC Rt ACD AB CD AC BC 存在这样的点D 2 若 A的位置大小不变 B的圆心在x轴正半轴上 并使 B与 A始终外切过M作 B的切线 切点为C 在此变化过程中探究 1四边形OMCB是什么四边形 2经过M N B三点的抛物线内是否存在以BN为腰的等腰三角形 若存在 表示出来 若不存在 说明理由 O 解 1 在Rt AOB中OA 3 Sin OAB AB 5OB 4BP 5 3 2在R 中 in OAB AP 3 AM 5OM 2 点M O 2 BN ON OB BN 点N O 设MP解析式y kx b代入 M O 2 N O 又 NPB AOB 又 NPB AOB b 2 K MP的解析式 y x 2 设过M N B的解析式为 y a x x 4 且过点M O 2 得a 抛物线的解析式为 y x x 4 y x A B M C P N O 例2如图已知圆心A 0 3 A与x轴相切 B的圆心在x轴的正半轴上 且 B与 A外切于点P 两圆的公切线MP交y轴于点M 交x轴于点N 解1 OP OA OAB PAM Rt AOB Rt APM MP OBAM AB又MP MC MC OBOM BC 四边形MOBC是平行四边形 BOM 90 MOBC是矩形 存在 Rt MON Rt BPN BN MN由抛物线的对称性知 点M关于对称轴的对称点M 也满足条件 这样的三角形有两个 MNB与 M NB 例3已知二次函数的图象如图 1 求二次函数的解析式 2 若点N为线段BM上的一点 过点N作x轴的垂线 垂足为Q 当点N在线段BM上运动时 不与点B 点M重合 设NQ的长为t 四边形NQAC的面积为S 求S与 间的函数关系式及自变量的取值范围 3 在对称轴右侧的抛物线上是否存在点P使 PAC为Rt 若存在 求出所有符合条件的点P的坐标 若不存在 说明理由 解 由图象看出A 1 0 B 2 0 C O 2 设抛物线解析式为 y a x 2 在抛物线上 抛物线解析式为 分析 四边形NQAC的面积可分为S AOC和S梯形OCNQ的两部分来求 问题的关键是利用直线BM的解析式来确定NQ 解 2 设过B 2 0 M 的解析式为 则 直线 的解析式为 Q t 把 代入直线 的解析式 得 S 2 t 即S t2 t 3其中0 t 2 若点N为线段BM上的一点 过点N作x轴的垂线 垂足为Q 当点N在线段BM上运动时 不与点B 点M重合 设NQ的长为t 四边形NQAC的面积为S 求S与 间的函数关系式及自变量的取值范围 例3已知二次函数的图象如图 1 求二次函数的解析式 2 若点N为线段BM上的一点 过点N作x轴的垂线 垂足为Q 当点N在线段BM上运动时 不与点B 点M重合 设NQ的长为t 四边形NQAC的面积为S 求S与 间的函数关系式及自变量的取值范围 3 在对称轴右侧的抛物线上是否存在点P使 PAC为Rt 若存在 求出所有符合条件的点P的坐标 若不存在 说明理由 解 设P m n 则 当 是以 为斜边时有 即 把 代入得 点 当 以 为斜边时则 即 把 代入得 点 存在符合条件的点 坐标为 四 小结 1 存在型探索
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 半角题目及答案
- 安全综合知识试题及答案
- 钢水烫伤培训课件
- 可穿戴医疗设备市场潜力分析:2025年技术创新与需求变化报告
- 安全生产选择试题及答案
- 数字艺术市场2025年交易活跃度研究报告:艺术与虚拟现实结合的新领域001
- 安全检查工试题及答案
- 安全管理模拟试题及答案
- 预防燃气泄漏培训课件
- 中国原始社会美术课件
- 高血压内容小讲课
- 西藏2021年中考数学真题试卷(含答案)
- 沂蒙红色文化与沂蒙精神智慧树知到期末考试答案章节答案2024年临沂大学
- 中国地理(广州大学)智慧树知到期末考试答案章节答案2024年广州大学
- 课程与教学论(海南师范大学)智慧树知到期末考试答案2024年
- 校园超市经营投标方案(技术方案)
- 2023年辽宁省高中学业水平合格性考试物理试卷真题(答案详解)
- NBA-PPT简介(文字图片技巧)
- 一例压力性损伤的个案护理
- 初高中生物衔接课件
- 高压电动机预防性试验课件
评论
0/150
提交评论