




已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
定积分 观察下列演示过程 注意当分割加细时 矩形面积和与曲边梯形面积的关系 观察下列演示过程 注意当分割加细时 矩形面积和与曲边梯形面积的关系 观察下列演示过程 注意当分割加细时 矩形面积和与曲边梯形面积的关系 观察下列演示过程 注意当分割加细时 矩形面积和与曲边梯形面积的关系 观察下列演示过程 注意当分割加细时 矩形面积和与曲边梯形面积的关系 观察下列演示过程 注意当分割加细时 矩形面积和与曲边梯形面积的关系 观察下列演示过程 注意当分割加细时 矩形面积和与曲边梯形面积的关系 观察下列演示过程 注意当分割加细时 矩形面积和与曲边梯形面积的关系 观察下列演示过程 注意当分割加细时 矩形面积和与曲边梯形面积的关系 观察下列演示过程 注意当分割加细时 矩形面积和与曲边梯形面积的关系 观察下列演示过程 注意当分割加细时 矩形面积和与曲边梯形面积的关系 观察下列演示过程 注意当分割加细时 矩形面积和与曲边梯形面积的关系 观察下列演示过程 注意当分割加细时 矩形面积和与曲边梯形面积的关系 求由连续曲线y f x 对应的曲边梯形面积的方法 2 以直代曲 任取xi xi 1 xi 第i个小曲边梯形的面积用高为f xi 而宽为Dx的小矩形面积f xi Dx近似之 3 逼近 如果 x无限趋近于0时 Sn无限趋近于常数S 3 作和 取n个小矩形面积的和作为曲边梯形面积S的近似值 xi xi 1 xi 1 分割 在区间 0 1 上等间隔地插入n 1个点 将它等分成n个小区间 每个小区间宽度 x 一 定积分的定义 如果当即n 时 Sn的无限接近某个常数s 这个常数为函数f x 在区间 a b 上的定积分 记作 从求曲边梯形面积S的过程中可以看出 通过 四步曲 分割 以直代曲 作和 逼近得到解决 0 x 定积分的定义 定积分的相关名称 叫做积分号 f x 叫做被积函数 f x dx 叫做被积表达式 x 叫做积分变量 a 叫做积分下限 b 叫做积分上限 a b 叫做积分区间 积分下限 积分上限 按定积分的定义 有 1 由连续曲线y f x f x 0 直线x a x b及x轴所围成的曲边梯形的面积为 2 设物体运动的速度v v t 则此物体在时间区间 a b 内运动的距离s为 定积分的定义 3 变力作功问题可表示为 1 说明 1 定积分是一个数值 它只与被积函数及积分区间有关 而与积分变量的记法无关 即 4 1 由曲线y x2 1与直线x 1 x 3及x轴所围成的曲边梯形的面积 用定积分表示为 2 中 积分上限是 积分下限是 积分区间是 二 举例 2 2 2 2 3 定积分 8 思考 函数在区间 a b 上的定积分能否为负的 定积分 定积分 三 定积分的几何意义 曲线y f x 直线x a x b y 0所围成的曲边梯形的面积 2 当函数f x 0 x a b 时定积分几何意义 就是位于x轴下方的曲边梯形面积的相反数 3 当函数f x 在x a b 有正有负时 定积分几何意义 就是图中几个曲边图形面积的代数和 x轴上方面积取正号 x轴下方面积取负号 1求下列定积分 1 四 例题分析 2 求定积分 只要理解被积函数和定积分的意义 并作出图形 即可解决 用定积分表示下列阴影部分面积 S S S 四 小结 定积分的实质 特殊和式的逼近值 定积分的思想和方法 求近似以直 不变 代曲 变 取逼近 3 定积分的几何意义及简单应用 探究 根据定积分的几何意义 如何用定积分表示图中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025黑龙江大庆市肇源县公益性岗位招聘预模拟试卷及答案详解(夺冠系列)
- 2025北京首都师范大学附属育新学校招聘12人模拟试卷及一套答案详解
- 2025年甘肃省中共嘉峪关市委党校(市行政学院)招聘公益性岗位人员模拟试卷附答案详解(模拟题)
- 2025黑龙江齐齐哈尔市建华区中华街道公益性岗位招聘1人考前自测高频考点模拟试题及一套答案详解
- 沧州市中医院高血压脑出血微创手术考核
- 2025黑龙江鹤岗市工农区酒行招聘模拟试卷附答案详解(突破训练)
- 衡水市中医院甲状腺再次手术技术准入考核
- 2025广东揭阳市惠来县校园现场招聘教师70人(编制)模拟试卷及答案详解(夺冠系列)
- 2025北京市房山区韩村河镇社区卫生服务中心招聘1人模拟试卷(含答案详解)
- 邯郸市人民医院消化科造口治疗师资格认证考试题库
- 2025年北森潜力测评试题及答案
- 2025银行招聘试题及答案详解
- 2025年成人高考高升专试题(含答案)
- 2025贵州册亨县招聘教师25人考试参考试题及答案解析
- 河南成人2024学位英语考试真题及答案
- 2025年淮南市大通区和寿县经开区公开招聘社区“两委”后备干部30名考试参考试题及答案解析
- 长期照护师培训考核试卷及答案
- 医保病历审核课件
- 煤矿安全规程2025版解读
- 2025年秋季开学典礼诗歌朗诵稿:纪念抗战胜利八十周年
- 军人识图用图课件
评论
0/150
提交评论