




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1. (2014湖北宜昌,第23题11分)在矩形ABCD中,=a,点G,H分别在边AB,DC上,且HA=HG,点E为AB边上的一个动点,连接HE,把AHE沿直线HE翻折得到FHE(1)如图1,当DH=DA时,填空:HGA=度;若EFHG,求AHE的度数,并求此时的最小值;(2)如图3,AEH=60,EG=2BG,连接FG,交边FG,交边DC于点P,且FGAB,G为垂足,求a的值1解答:解:(1)45分两种情况讨论:第一种情况:HAG=HGA=45AHG=90;,由折叠可知:HAE=F=45,AHE=FHE,EFHG,FHG=F=45,AHF=AHGFHG=45,即AHE+FHE=45,AHE=22.5,此时,当B与G重合时,a的值最小,最小值是2;第二种情况:EFHG,HGA=FEA=45,即AEH+FEH=45,由折叠可知:AEH=FEH,AEH=FEH=22.5EFHG,GHE=FEH=22.5,AHE=90+22.5=112.5,此时,当B与E重合时,a的值最小,设DH=DA=x,则AH=CH=x,在RtAHG中,AHG=90,由勾股定理得AG=AH=2x,:AEH=FEH,GHE=FEH,AEH=GHEGH=GE=x,AB=AE=2x+x,a的最小值是=2+;(2)如图:过点H作HQAB于Q,则AQH=GOH=90,在矩形ABCD中,D=DAQ=90,D=DAQ=AQH=90,四边形DAQH为矩形,AD=HQ,设AD=x,GB=y,则HQ=x,EG=2y,由折叠可知:AEH=FEH=60,FEG=60,在RtEFG中,EG=EFcos60,EF=4y,在RtHQE中,EQ=x,QG=QE+EG=x+2y,HA=HG,HQAB,AQ=GQ=x+2y,AE=AQ+QE=x+2y,由折叠可知:AE=EF,x+2y=4y,y=x,AB=2AQ+GB=2(x+2y)+y=x,a= 2. (2014湖南衡阳,第27题10分)如图,已知直线AB分别交x轴、y轴于点A(4,0)、B(0,3),点P从点A出发,以每秒1个单位的速度沿直线AB向点B移动,同时,将直线y=x以每秒0.6个单位的速度向上平移,分别交AO、BO于点C、D,设运动时间为t秒(0t5)(1)证明:在运动过程中,四边形ACDP总是平行四边形;(2)当t取何值时,四边形ACDP为菱形?且指出此时以点D为圆心,以DO长为半径的圆与直线AB的位置关系,并说明理由 2解答:解:(1)设直线AB的解析式为y=kx+b,由题意,得,解得:,y=x+3直线AB直线y=xA(4,0)、B(0,3),OA=4,OB=3,在RtAOB中,由勾股定理,得AB=5sinBAO=,tanDCO=作PEAO,PEA=PEO=90AP=t,PE=0.6tOD=0.6t,PE=ODBOC=90,PEA=BOCPEDO,四边形PEOD是平行四边形,PDAOABCD,四边形ACDP总是平行四边形;(2)ABCD,BAO=DCO,tanDCO=tanBAO=DO=0.6t,CO=0.8t,AC=40.8t四边形ACDP为菱形,AP=AC,t=40.8t,t=DO=,AC=PDAC,BPD=BAO,sinBPD=sinBAO=作DFAB于FDFP=90,DF=DF=DO以点D为圆心,以DO长为半径的圆与直线AB相切3. (2014莱芜,第24题12分)如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4x于C、D两点抛物线y=ax2+bx+c经过O、C、D三点(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中AOC与OBD重叠部分的面积记为S,试求S的最大值3解答3解:(1)由题意,可得C(1,3),D(3,1)抛物线过原点,设抛物线的解析式为:y=ax2+bx,解得,抛物线的表达式为:y=x2+x(2)存在设直线OD解析式为y=kx,将D(3,1)代入求得k=,直线OD解析式为y=x设点M的横坐标为x,则M(x, x),N(x, x2+x),MN=|yMyN|=|x(x2+x)|=|x24x|由题意,可知MNAC,因为以A、C、M、N为顶点的四边形为平行四边形,则有MN=AC=3|x24x|=3若x24x=3,整理得:4x212x9=0,解得:x=或x=;若x24x=3,整理得:4x212x+9=0,解得:x=存在满足条件的点M,点M的横坐标为:或或(3)C(1,3),D(3,1)易得直线OC的解析式为y=3x,直线OD的解析式为y=x如解答图所示,设平移中的三角形为AOC,点C在线段CD上设OC与x轴交于点E,与直线OD交于点P;设AC与x轴交于点F,与直线OD交于点Q设水平方向的平移距离为t(0t2),则图中AF=t,F(1+t),Q(1+t, +t),C(1+t,3t)设直线OC的解析式为y=3x+b,将C(1+t,3t)代入得:b=4t,直线OC的解析式为y=3x4tE(t,0)联立y=3x4t与y=x,解得x=t,P(t, t)过点P作PGx轴于点G,则PG=tS=SOFQSOEP=OFFQOEPG=(1+t)(+t)tt=(t1)2+当t=1时,S有最大值为S的最大值为4. (2014青岛,第24题12分)已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EFBD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动连接PF,设运动时间为t(s)(0t8)解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由4解:(1)四边形ABCD是菱形,ABCD,ACBD,OA=OC=AC=6,OB=OD=BD=8在RtAOB中,AB=10EFBD,FQD=COD=90又FDQ=CDO,DFQDCO=即=,DF=t四边形APFD是平行四边形,AP=DF即10t=t,解这个方程,得t=当t=s时,四边形APFD是平行四边形(2)如图,过点C作CGAB于点G, S菱形ABCD=ABCG=ACBD,即10CG=1216,CG=S梯形APFD=(AP+DF)CG=(10t+t)=t+48DFQDCO,=即=,QF=t同理,EQ=tEF=QF+EQ=tSEFD=EFQD=tt=t2y=(t+48)t2=t2+t+48(3)如图,过点P作PMEF于点M,PNBD于点N,若S四边形APFE:S菱形ABCD=17:40,则t2+t+48=96,即5t28t48=0,解这个方程,得t1=4,t2=(舍去)过点P作PMEF于点M,PNBD于点N,当t=4时,PBNABO,=,即=PN=,BN=EM=EQMQ=PM=BDBNDQ=在RtPME中,PE=(cm)5(2014重庆A,第26题12分)已知:如图,在矩形ABCD中,AB=5,AD=,AEBD,垂足是E点F是点E关于AB的对称点,连接AF、BF(1)求AE和BE的长;(2)若将ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度)当点F分别平移到线段AB、AD上时,直接写出相应的m的值(3)如图,将ABF绕点B顺时针旋转一个角(0180),记旋转中的ABF为ABF,在旋转过程中,设AF所在的直线与直线AD交于点P,与直线BD交于点Q是否存在这样的P、Q两点,使DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由5解答:解:(1)AE=4 BE=3(2)设平移中的三角形为ABF,如答图2所示:由对称点性质可知,1=2由平移性质可知,ABAB,4=1,BF=BF=3当点F落在AB上时,BB=BF=3,即m=3;当点F落在AD上时,BB=BDBD=3=,即m=(3)存在理由如下:在旋转过程中,等腰DPQ依次有以下4种情形:如答图31所示,点Q落在BD延长线上,且PD=DQ,易知2=2Q,DQ=BQBD=;如答图32所示,点Q落在BD上,且PQ=DQ,易知2=P,在RtBQF中,由勾股定理得:BF2+FQ2=BQ2,即:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 液温考试试题及答案
- 莆田哲理考试题及答案
- 机车制动试题及答案
- 校园安全知识培训课件图片
- 神经阻滞考试题及答案
- 安永税务面试题及答案
- 高一语文期末考试题及答案
- 押运员实体考试试题及答案
- 票据试题及答案答案
- 工程造价面试题及答案
- 山东省第二届化学分析检验人员行业职业技能竞赛理论试题库资料(含答案)
- 人教版数学一年级(上册)知识点全
- 孕产妇健康管理服务规范
- AQ 1097-2014 井工煤矿安全设施设计编制导则(正式版)
- NBT 47013.13-2015 承压设备无损检测 第13部分:脉冲涡流检测
- 2024年三亚市海棠区营商环境建设局一级科员招录1人《行政职业能力测验》高频考点、难点(含详细答案)
- 2024-2030年中国培南类抗菌药物行业市场运行态势及发展战略研究报告
- 知识题库-人社练兵比武竞赛测试题及答案(七)
- JJG 326-2021 转速标准装置
- 剑桥新PET作文模板
- 陆上石油天然气开采安全管理人员复习题
评论
0/150
提交评论